Cargando…
An equivariant generative framework for molecular graph-structure Co-design
Designing molecules with desirable physiochemical properties and functionalities is a long-standing challenge in chemistry, material science, and drug discovery. Recently, machine learning-based generative models have emerged as promising approaches for de novo molecule design. However, further refi...
Autores principales: | Zhang, Zaixi, Liu, Qi, Lee, Chee-Kong, Hsieh, Chang-Yu, Chen, Enhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411624/ https://www.ncbi.nlm.nih.gov/pubmed/37564414 http://dx.doi.org/10.1039/d3sc02538a |
Ejemplares similares
-
Equivariant
Graph Neural Networks for Toxicity Prediction
por: Cremer, Julian, et al.
Publicado: (2023) -
An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging
por: Gong, Shiqi, et al.
Publicado: (2022) -
Contextual protein and antibody encodings from equivariant graph transformers
por: Mahajan, Sai Pooja, et al.
Publicado: (2023) -
Scaffold-based molecular design with a graph generative model
por: Lim, Jaechang, et al.
Publicado: (2019) -
Atomic protein structure refinement using all-atom graph representations and SE(3)-equivariant graph transformer
por: Wu, Tianqi, et al.
Publicado: (2023)