Cargando…
Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials
Realistically modelling how solvents affect catalytic reactions is a longstanding challenge due to its prohibitive computational cost. Typically, an explicit atomistic treatment of the solvent molecules is needed together with molecular dynamics (MD) simulations and enhanced sampling methods. Here,...
Autores principales: | Chen, Benjamin W. J., Zhang, Xinglong, Zhang, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411631/ https://www.ncbi.nlm.nih.gov/pubmed/37564405 http://dx.doi.org/10.1039/d3sc02482b |
Ejemplares similares
-
Interatomic potentials
por: Torrens, Iam
Publicado: (1972) -
Machine Learning
Interatomic Potentials and Long-Range
Physics
por: Anstine, Dylan M., et al.
Publicado: (2023) -
Evaluation of Machine Learning Interatomic Potentials for the Properties of Gold Nanoparticles
por: Fronzi, Marco, et al.
Publicado: (2022) -
NewtonNet: a Newtonian message passing network for deep learning of interatomic potentials and forces
por: Haghighatlari, Mojtaba, et al.
Publicado: (2022) -
Evaluation of Machine Learning Interatomic Potentials for Gold Nanoparticles—Transferability towards Bulk
por: Fronzi, Marco, et al.
Publicado: (2023)