Cargando…
Heuristic-enabled active machine learning: A case study of predicting essential developmental stage and immune response genes in Drosophila melanogaster
Computational prediction of absolute essential genes using machine learning has gained wide attention in recent years. However, essential genes are mostly conditional and not absolute. Experimental techniques provide a reliable approach of identifying conditionally essential genes; however, experime...
Autores principales: | Aromolaran, Olufemi Tony, Isewon, Itunu, Adedeji, Eunice, Oswald, Marcus, Adebiyi, Ezekiel, Koenig, Rainer, Oyelade, Jelili |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411809/ https://www.ncbi.nlm.nih.gov/pubmed/37556452 http://dx.doi.org/10.1371/journal.pone.0288023 |
Ejemplares similares
-
Predicting host dependency factors of pathogens in Drosophila melanogaster using machine learning
por: Aromolaran, Olufemi, et al.
Publicado: (2021) -
Essential gene prediction in Drosophila melanogaster using machine learning approaches based on sequence and functional features
por: Aromolaran, Olufemi, et al.
Publicado: (2020) -
Clustering Algorithms: Their Application to Gene Expression Data
por: Oyelade, Jelili, et al.
Publicado: (2016) -
In Silico Knockout Screening of Plasmodium falciparum Reactions and Prediction of Novel Essential Reactions by Analysing the Metabolic Network
por: Oyelade, Jelili, et al.
Publicado: (2018) -
Computational Identification of Metabolic Pathways of Plasmodium falciparum using the k-Shortest Path Algorithm
por: Oyelade, Jelili, et al.
Publicado: (2019)