Cargando…
Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage
Mg-ion batteries offer a safe, low-cost, and high–energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery w...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411913/ https://www.ncbi.nlm.nih.gov/pubmed/37556543 http://dx.doi.org/10.1126/sciadv.adh1181 |
Sumario: | Mg-ion batteries offer a safe, low-cost, and high–energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery with an operating voltage above 2 V yet still lower than its nonaqueous counterpart because of the dominance of proton over Mg-ion insertion in the cathode. We designed a quasi-solid-state magnesium-ion battery (QSMB) that confines the hydrogen bond network for true multivalent metal ion storage. The QSMB demonstrates an energy density of 264 W·hour kg(−1), nearly five times higher than aqueous Mg-ion batteries and a voltage plateau (2.6 to 2.0 V), outperforming other Mg-ion batteries. In addition, it retains 90% of its capacity after 900 cycles at subzero temperatures (−22°C). The QSMB leverages the advantages of aqueous and nonaqueous systems, offering an innovative approach to designing high-performing Mg-ion batteries and other multivalent metal ion batteries. |
---|