Cargando…
Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage
Mg-ion batteries offer a safe, low-cost, and high–energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery w...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411913/ https://www.ncbi.nlm.nih.gov/pubmed/37556543 http://dx.doi.org/10.1126/sciadv.adh1181 |
_version_ | 1785086771793494016 |
---|---|
author | Leong, Kee Wah Pan, Wending Yi, Xiaoping Luo, Shijing Zhao, Xiaolong Zhang, Yingguang Wang, Yifei Mao, Jianjun Chen, Yue Xuan, Jin Wang, Huizhi Leung, Dennis Y. C. |
author_facet | Leong, Kee Wah Pan, Wending Yi, Xiaoping Luo, Shijing Zhao, Xiaolong Zhang, Yingguang Wang, Yifei Mao, Jianjun Chen, Yue Xuan, Jin Wang, Huizhi Leung, Dennis Y. C. |
author_sort | Leong, Kee Wah |
collection | PubMed |
description | Mg-ion batteries offer a safe, low-cost, and high–energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery with an operating voltage above 2 V yet still lower than its nonaqueous counterpart because of the dominance of proton over Mg-ion insertion in the cathode. We designed a quasi-solid-state magnesium-ion battery (QSMB) that confines the hydrogen bond network for true multivalent metal ion storage. The QSMB demonstrates an energy density of 264 W·hour kg(−1), nearly five times higher than aqueous Mg-ion batteries and a voltage plateau (2.6 to 2.0 V), outperforming other Mg-ion batteries. In addition, it retains 90% of its capacity after 900 cycles at subzero temperatures (−22°C). The QSMB leverages the advantages of aqueous and nonaqueous systems, offering an innovative approach to designing high-performing Mg-ion batteries and other multivalent metal ion batteries. |
format | Online Article Text |
id | pubmed-10411913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-104119132023-08-10 Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage Leong, Kee Wah Pan, Wending Yi, Xiaoping Luo, Shijing Zhao, Xiaolong Zhang, Yingguang Wang, Yifei Mao, Jianjun Chen, Yue Xuan, Jin Wang, Huizhi Leung, Dennis Y. C. Sci Adv Physical and Materials Sciences Mg-ion batteries offer a safe, low-cost, and high–energy density alternative to current Li-ion batteries. However, nonaqueous Mg-ion batteries struggle with poor ionic conductivity, while aqueous batteries face a narrow electrochemical window. Our group previously developed a water-in-salt battery with an operating voltage above 2 V yet still lower than its nonaqueous counterpart because of the dominance of proton over Mg-ion insertion in the cathode. We designed a quasi-solid-state magnesium-ion battery (QSMB) that confines the hydrogen bond network for true multivalent metal ion storage. The QSMB demonstrates an energy density of 264 W·hour kg(−1), nearly five times higher than aqueous Mg-ion batteries and a voltage plateau (2.6 to 2.0 V), outperforming other Mg-ion batteries. In addition, it retains 90% of its capacity after 900 cycles at subzero temperatures (−22°C). The QSMB leverages the advantages of aqueous and nonaqueous systems, offering an innovative approach to designing high-performing Mg-ion batteries and other multivalent metal ion batteries. American Association for the Advancement of Science 2023-08-09 /pmc/articles/PMC10411913/ /pubmed/37556543 http://dx.doi.org/10.1126/sciadv.adh1181 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Leong, Kee Wah Pan, Wending Yi, Xiaoping Luo, Shijing Zhao, Xiaolong Zhang, Yingguang Wang, Yifei Mao, Jianjun Chen, Yue Xuan, Jin Wang, Huizhi Leung, Dennis Y. C. Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title | Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title_full | Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title_fullStr | Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title_full_unstemmed | Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title_short | Next-generation magnesium-ion batteries: The quasi-solid-state approach to multivalent metal ion storage |
title_sort | next-generation magnesium-ion batteries: the quasi-solid-state approach to multivalent metal ion storage |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411913/ https://www.ncbi.nlm.nih.gov/pubmed/37556543 http://dx.doi.org/10.1126/sciadv.adh1181 |
work_keys_str_mv | AT leongkeewah nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT panwending nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT yixiaoping nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT luoshijing nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT zhaoxiaolong nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT zhangyingguang nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT wangyifei nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT maojianjun nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT chenyue nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT xuanjin nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT wanghuizhi nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage AT leungdennisyc nextgenerationmagnesiumionbatteriesthequasisolidstateapproachtomultivalentmetalionstorage |