Cargando…

SF3B1 hotspot mutations confer sensitivity to PARP inhibition by eliciting a defective replication stress response

SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1(MUT)) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi...

Descripción completa

Detalles Bibliográficos
Autores principales: Bland, Philip, Saville, Harry, Wai, Patty T., Curnow, Lucinda, Muirhead, Gareth, Nieminuszczy, Jadwiga, Ravindran, Nivedita, John, Marie Beatrix, Hedayat, Somaieh, Barker, Holly E., Wright, James, Yu, Lu, Mavrommati, Ioanna, Read, Abigail, Peck, Barrie, Allen, Mark, Gazinska, Patrycja, Pemberton, Helen N., Gulati, Aditi, Nash, Sarah, Noor, Farzana, Guppy, Naomi, Roxanis, Ioannis, Pratt, Guy, Oldreive, Ceri, Stankovic, Tatjana, Barlow, Samantha, Kalirai, Helen, Coupland, Sarah E., Broderick, Ronan, Alsafadi, Samar, Houy, Alexandre, Stern, Marc-Henri, Pettit, Stephen, Choudhary, Jyoti S., Haider, Syed, Niedzwiedz, Wojciech, Lord, Christopher J., Natrajan, Rachael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412459/
https://www.ncbi.nlm.nih.gov/pubmed/37524790
http://dx.doi.org/10.1038/s41588-023-01460-5
Descripción
Sumario:SF3B1 hotspot mutations are associated with a poor prognosis in several tumor types and lead to global disruption of canonical splicing. Through synthetic lethal drug screens, we identify that SF3B1 mutant (SF3B1(MUT)) cells are selectively sensitive to poly (ADP-ribose) polymerase inhibitors (PARPi), independent of hotspot mutation and tumor site. SF3B1(MUT) cells display a defective response to PARPi-induced replication stress that occurs via downregulation of the cyclin-dependent kinase 2 interacting protein (CINP), leading to increased replication fork origin firing and loss of phosphorylated CHK1 (pCHK1; S317) induction. This results in subsequent failure to resolve DNA replication intermediates and G(2)/M cell cycle arrest. These defects are rescued through CINP overexpression, or further targeted by a combination of ataxia-telangiectasia mutated and PARP inhibition. In vivo, PARPi produce profound antitumor effects in multiple SF3B1(MUT) cancer models and eliminate distant metastases. These data provide the rationale for testing the clinical efficacy of PARPi in a biomarker-driven, homologous recombination proficient, patient population.