Cargando…
Long- and short-term history effects in a spiking network model of statistical learning
The statistical structure of the environment is often important when making decisions. There are multiple theories of how the brain represents statistical structure. One such theory states that neural activity spontaneously samples from probability distributions. In other words, the network spends m...
Autores principales: | Maes, Amadeus, Barahona, Mauricio, Clopath, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412617/ https://www.ncbi.nlm.nih.gov/pubmed/37558704 http://dx.doi.org/10.1038/s41598-023-39108-3 |
Ejemplares similares
-
Learning spatiotemporal signals using a recurrent spiking network that discretizes time
por: Maes, Amadeus, et al.
Publicado: (2020) -
Learning compositional sequences with multiple time scales through a hierarchical network of spiking neurons
por: Maes, Amadeus, et al.
Publicado: (2021) -
Supervised learning in spiking neural networks with FORCE training
por: Nicola, Wilten, et al.
Publicado: (2017) -
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level
por: Bono, Jacopo, et al.
Publicado: (2017) -
Memories in a network with excitatory and inhibitory plasticity are encoded in the spiking irregularity
por: Gallinaro, Júlia V., et al.
Publicado: (2021)