Cargando…
An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA
The aim of the study is to investigate the differences in the interaction of three structurally diverse anthocyanidins, namely peonidin, petunidin, and delphinidin, as well as their glucosides with model biological membranes, human albumin, and plasmid DNA in order to look into their structure–activ...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412636/ https://www.ncbi.nlm.nih.gov/pubmed/37558717 http://dx.doi.org/10.1038/s41598-023-39470-2 |
_version_ | 1785086955905613824 |
---|---|
author | Dudek, Anita Strugała-Danak, Paulina Kral, Teresa Hof, Martin Pruchnik, Hanna |
author_facet | Dudek, Anita Strugała-Danak, Paulina Kral, Teresa Hof, Martin Pruchnik, Hanna |
author_sort | Dudek, Anita |
collection | PubMed |
description | The aim of the study is to investigate the differences in the interaction of three structurally diverse anthocyanidins, namely peonidin, petunidin, and delphinidin, as well as their glucosides with model biological membranes, human albumin, and plasmid DNA in order to look into their structure–activity relationships. Fluorimetric studies, as well as ATR-FTIR analyses, were jointly used in order to determine the changes observed in both the hydrophilic and hydrophobic layers of cell-mimic membranes (MM) which reflected the membrane lipid composition of tumour cells and red blood cell membranes (RBCM). Our results showed that anthocyanins and anthocyanidins can cause an increase in the packing order of the polar heads of lipids, as well as interact with their deeper layers by reducing the fluidity of lipid chains. The results presented here indicate that all compounds tested here possessed the ability to bind to human serum albumin (HSA) and the presence of a glucose molecule within the structures formed by anthocyanidin reduces their ability to bind to proteins. Using fluorescence correlation spectroscopy, it was demonstrated that the compounds tested here were capable of forming stable complexes with plasmid DNA and, particularly, strong DNA conformational changes were observed in the presence of petunidin and corresponding glucoside, as well as delphinidin. The results we obtained can be useful in comprehending the anthocyanins therapeutic action as molecular antioxidants and provide a valuable insight into their mechanism of action. |
format | Online Article Text |
id | pubmed-10412636 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-104126362023-08-11 An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA Dudek, Anita Strugała-Danak, Paulina Kral, Teresa Hof, Martin Pruchnik, Hanna Sci Rep Article The aim of the study is to investigate the differences in the interaction of three structurally diverse anthocyanidins, namely peonidin, petunidin, and delphinidin, as well as their glucosides with model biological membranes, human albumin, and plasmid DNA in order to look into their structure–activity relationships. Fluorimetric studies, as well as ATR-FTIR analyses, were jointly used in order to determine the changes observed in both the hydrophilic and hydrophobic layers of cell-mimic membranes (MM) which reflected the membrane lipid composition of tumour cells and red blood cell membranes (RBCM). Our results showed that anthocyanins and anthocyanidins can cause an increase in the packing order of the polar heads of lipids, as well as interact with their deeper layers by reducing the fluidity of lipid chains. The results presented here indicate that all compounds tested here possessed the ability to bind to human serum albumin (HSA) and the presence of a glucose molecule within the structures formed by anthocyanidin reduces their ability to bind to proteins. Using fluorescence correlation spectroscopy, it was demonstrated that the compounds tested here were capable of forming stable complexes with plasmid DNA and, particularly, strong DNA conformational changes were observed in the presence of petunidin and corresponding glucoside, as well as delphinidin. The results we obtained can be useful in comprehending the anthocyanins therapeutic action as molecular antioxidants and provide a valuable insight into their mechanism of action. Nature Publishing Group UK 2023-08-09 /pmc/articles/PMC10412636/ /pubmed/37558717 http://dx.doi.org/10.1038/s41598-023-39470-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Dudek, Anita Strugała-Danak, Paulina Kral, Teresa Hof, Martin Pruchnik, Hanna An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title | An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title_full | An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title_fullStr | An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title_full_unstemmed | An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title_short | An analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid DNA |
title_sort | analysis of interactions between three structurally diverse anthocyanidins, as well as their glucosides, and model biological membranes, albumin, and plasmid dna |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412636/ https://www.ncbi.nlm.nih.gov/pubmed/37558717 http://dx.doi.org/10.1038/s41598-023-39470-2 |
work_keys_str_mv | AT dudekanita ananalysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT strugaładanakpaulina ananalysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT kralteresa ananalysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT hofmartin ananalysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT pruchnikhanna ananalysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT dudekanita analysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT strugaładanakpaulina analysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT kralteresa analysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT hofmartin analysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna AT pruchnikhanna analysisofinteractionsbetweenthreestructurallydiverseanthocyanidinsaswellastheirglucosidesandmodelbiologicalmembranesalbuminandplasmiddna |