Cargando…
Characterization of noise in long-term ECG monitoring with machine learning based on clinical criteria
Noise and artifacts affect strongly the quality of the electrocardiogram (ECG) in long-term ECG monitoring (LTM), making some of its parts impractical for diagnosis. The clinical severity of noise defines a qualitative quality score according to the manner clinicians make the interpretation of the E...
Autores principales: | Holgado-Cuadrado, Roberto, Plaza-Seco, Carmen, Lovisolo, Lisandro, Blanco-Velasco, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412684/ https://www.ncbi.nlm.nih.gov/pubmed/37010711 http://dx.doi.org/10.1007/s11517-023-02802-5 |
Ejemplares similares
-
Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring
por: Everss-Villalba, Estrella, et al.
Publicado: (2017) -
On Power Line Positioning Systems
por: Lovisolo, Lisandro, et al.
Publicado: (2022) -
On the Beat Detection Performance in Long-Term ECG Monitoring Scenarios
por: Melgarejo-Meseguer, Francisco-Manuel, et al.
Publicado: (2018) -
ECG Noise Cancellation Based on Grey Spectral Noise Estimation
por: Liu, Shing-Hong, et al.
Publicado: (2019) -
Noise-Reducing Fabric Electrode for ECG Measurement
por: Terada, Takamasa, et al.
Publicado: (2021)