Cargando…

RNase E biomolecular condensates stimulate PNPase activity

Bacterial Ribonucleoprotein bodies (BR-bodies) play an essential role in organizing RNA degradation via phase separation in the cytoplasm of bacteria. BR-bodies mediate multi-step mRNA decay through the concerted activity of the endoribonuclease RNase E coupled with the 3′-5′ exoribonuclease Polynuc...

Descripción completa

Detalles Bibliográficos
Autores principales: Collins, Michael J., Tomares, Dylan T., Nandana, Vidhyadhar, Schrader, Jared M., Childers, W. Seth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412687/
https://www.ncbi.nlm.nih.gov/pubmed/37558691
http://dx.doi.org/10.1038/s41598-023-39565-w
Descripción
Sumario:Bacterial Ribonucleoprotein bodies (BR-bodies) play an essential role in organizing RNA degradation via phase separation in the cytoplasm of bacteria. BR-bodies mediate multi-step mRNA decay through the concerted activity of the endoribonuclease RNase E coupled with the 3′-5′ exoribonuclease Polynucleotide Phosphorylase (PNPase). In vivo, studies indicated that the loss of PNPase recruitment into BR-bodies led to a significant build-up of RNA decay intermediates in Caulobacter crescentus. However, it remained unclear whether this is due to a lack of colocalized PNPase and RNase E within BR-bodies or whether PNPase’s activity is stimulated within the BR-body. We reconstituted RNase E’s C-terminal domain with PNPase towards a minimal BR-body in vitro to distinguish these possibilities. We found that PNPase’s catalytic activity is accelerated when colocalized within the RNase E biomolecular condensates, partly due to scaffolding and mass action effects. In contrast, disruption of the RNase E-PNPase protein–protein interaction led to a loss of PNPase recruitment into the RNase E condensates and a loss of ribonuclease rate enhancement. We also found that RNase E’s unique biomolecular condensate environment tuned PNPase’s substrate specificity for poly(A) over poly(U). Intriguingly, a critical PNPase reactant, phosphate, reduces RNase E phase separation both in vitro and in vivo. This regulatory feedback ensures that under limited phosphate resources, PNPase activity is enhanced by recruitment into RNase E’s biomolecular condensates.