Cargando…

Immune infiltration and drug specificity analysis of different subtypes based on functional status in angioimmunoblastic T-cell lymphoma

Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma (PTCL) strongly correlated with worse clinical outcomes. However, the role of characteristic pathway-related genes in patients with AITL (e.g., subtype typing and pathogenesis) remains unknown. In this study, we int...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Shicong, Zhao, Yan, Xing, Cheng, Guo, Wancheng, Huang, Zineng, Zhang, Huifang, Yin, Le, Ruan, Xueqin, Li, Heng, Cheng, Zhao, Wang, Zhihua, Peng, Hongling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412840/
https://www.ncbi.nlm.nih.gov/pubmed/37576233
http://dx.doi.org/10.1016/j.heliyon.2023.e18836
Descripción
Sumario:Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of peripheral T-cell lymphoma (PTCL) strongly correlated with worse clinical outcomes. However, the role of characteristic pathway-related genes in patients with AITL (e.g., subtype typing and pathogenesis) remains unknown. In this study, we intended to understand the potential role and prognostic value of characteristic pathways in AITL and identified a model for subtype identification based on pathway-related functional status. Transcriptomic (RNA-seq) data were obtained from the Gene Expression Omnibus database for three sets of tumor tissues from AITL patients. AITL was divided into three clusters based on the pathway profile of patients and the best clustering k = 3, and differentially expressed genes (DEGs) in the three clusters were analyzed. The top 45 important variables associated with characteristic pathways, such as Huntington's disease, VEGF signaling pathway, nucleotide excision repair, ubiquitin-mediated proteolysis, purine metabolism, olfactory transduction, etc., were used to construct a subtype identification model. The model was experimentally validated and proved to possess good predictive efficacy. In addition, pathway-related subtype typing was significantly associated with different immune cell infiltration in AITL. Further analysis revealed that the drug IC(50) values predicted also differed markedly among the different subtypes, thus further identifying some subtype-specific drugs. Our study indicates a potential role of characteristic pathways in AITL staging for the first time, provides novel insights for future research targeting AITL, and points to potential therapeutic options for patients with different subtypes of AITL.