Cargando…
Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology
The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412881/ https://www.ncbi.nlm.nih.gov/pubmed/37576289 http://dx.doi.org/10.1016/j.heliyon.2023.e18302 |
_version_ | 1785087013543739392 |
---|---|
author | Mtetwa, Hlengiwe N. Amoah, Isaac D. Kumari, Sheena Bux, Faizal Reddy, Poovendhree |
author_facet | Mtetwa, Hlengiwe N. Amoah, Isaac D. Kumari, Sheena Bux, Faizal Reddy, Poovendhree |
author_sort | Mtetwa, Hlengiwe N. |
collection | PubMed |
description | The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment. Using droplet-digital polymerase chain reaction (ddPCR), the study evaluated untreated and treated wastewater samples in selected African countries for TB surveillance. There was a statistically significant difference in concentrations of genes conferring resistance to TB drugs in wastewater samples from the selected countries (p-value<0.05); South African samples exhibited the highest concentrations of 4.3(±2,77), 4.8(±2.96), 4.4(±3,10) and 4.7(±3,39) log copies/ml for genes conferring resistance to first-line TB drugs (katG, rpoB, embB and pncA respectively) in untreated wastewater. This may be attributed to the higher prevalence of TB/MDR-TB in SA compared to other African countries. Interestingly, genes conferring resistance to second-line TB drugs such as delamanid (ddn gene) and bedaquiline (atpE gene) were detected in relatively high concentrations (4.8(±3,67 and 3.2(±2,31 log copies/ml for ddn and atpE respectively) in countries, such as Cameroon, where these drugs are not part of the MDR-TB treatment regimens, perhaps due to migration or the unapproved use of these drugs in the country. The gene encoding resistance to streptomycin (rrs gene) was abundant in all countries, perhaps due to the common use of this antibiotic for infections other than TB. These results highlight the need for additional surveillance and monitoring, such as WBE, to gather data at a community level. Combining WBE with the One Health strategy and current TB surveillance systems can help prevent the spread of DR-TB in populations. |
format | Online Article Text |
id | pubmed-10412881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104128812023-08-11 Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology Mtetwa, Hlengiwe N. Amoah, Isaac D. Kumari, Sheena Bux, Faizal Reddy, Poovendhree Heliyon Research Article The spread of multidrug-resistant tuberculosis (MDR-TB) is a serious public health issue, particularly in developing nations. The current methods of monitoring drug-resistant TB (DR-TB) using clinical diagnoses and hospital records are insufficient due to limited healthcare access and underreporting. This study proposes using Wastewater-Based Epidemiology (WBE) to monitor DR-TB in six African countries (Ghana, Nigeria, Kenya, Uganda, Cameroon, and South Africa) and examines the impact of treated wastewater on the spread of TB drug-resistant genes in the environment. Using droplet-digital polymerase chain reaction (ddPCR), the study evaluated untreated and treated wastewater samples in selected African countries for TB surveillance. There was a statistically significant difference in concentrations of genes conferring resistance to TB drugs in wastewater samples from the selected countries (p-value<0.05); South African samples exhibited the highest concentrations of 4.3(±2,77), 4.8(±2.96), 4.4(±3,10) and 4.7(±3,39) log copies/ml for genes conferring resistance to first-line TB drugs (katG, rpoB, embB and pncA respectively) in untreated wastewater. This may be attributed to the higher prevalence of TB/MDR-TB in SA compared to other African countries. Interestingly, genes conferring resistance to second-line TB drugs such as delamanid (ddn gene) and bedaquiline (atpE gene) were detected in relatively high concentrations (4.8(±3,67 and 3.2(±2,31 log copies/ml for ddn and atpE respectively) in countries, such as Cameroon, where these drugs are not part of the MDR-TB treatment regimens, perhaps due to migration or the unapproved use of these drugs in the country. The gene encoding resistance to streptomycin (rrs gene) was abundant in all countries, perhaps due to the common use of this antibiotic for infections other than TB. These results highlight the need for additional surveillance and monitoring, such as WBE, to gather data at a community level. Combining WBE with the One Health strategy and current TB surveillance systems can help prevent the spread of DR-TB in populations. Elsevier 2023-07-21 /pmc/articles/PMC10412881/ /pubmed/37576289 http://dx.doi.org/10.1016/j.heliyon.2023.e18302 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Mtetwa, Hlengiwe N. Amoah, Isaac D. Kumari, Sheena Bux, Faizal Reddy, Poovendhree Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title | Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title_full | Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title_fullStr | Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title_full_unstemmed | Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title_short | Surveillance of multidrug-resistant tuberculosis in sub-Saharan Africa through wastewater-based epidemiology |
title_sort | surveillance of multidrug-resistant tuberculosis in sub-saharan africa through wastewater-based epidemiology |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412881/ https://www.ncbi.nlm.nih.gov/pubmed/37576289 http://dx.doi.org/10.1016/j.heliyon.2023.e18302 |
work_keys_str_mv | AT mtetwahlengiwen surveillanceofmultidrugresistanttuberculosisinsubsaharanafricathroughwastewaterbasedepidemiology AT amoahisaacd surveillanceofmultidrugresistanttuberculosisinsubsaharanafricathroughwastewaterbasedepidemiology AT kumarisheena surveillanceofmultidrugresistanttuberculosisinsubsaharanafricathroughwastewaterbasedepidemiology AT buxfaizal surveillanceofmultidrugresistanttuberculosisinsubsaharanafricathroughwastewaterbasedepidemiology AT reddypoovendhree surveillanceofmultidrugresistanttuberculosisinsubsaharanafricathroughwastewaterbasedepidemiology |