Cargando…
Proof of concept: Predicting distress in cancer patients using back propagation neural network (BPNN)
BACKGROUND: Research findings suggest that a significant proportion of individuals diagnosed with cancer, ranging from 25% to 60%, experience distress and require access to psycho-oncological services. Until now, only contemporary approaches, such as logistic regression, have been used to determine...
Autores principales: | Jan Ben, Schulze, Dörner, Marc, Günther, Moritz Philipp, von Känel, Roland, Euler, Sebastian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412887/ https://www.ncbi.nlm.nih.gov/pubmed/37576295 http://dx.doi.org/10.1016/j.heliyon.2023.e18328 |
Ejemplares similares
-
Reading Wishes from the Lips: Cancer Patients’ Need for Psycho-Oncological Support during Inpatient and Outpatient Treatment
por: Schulze, Jan Ben, et al.
Publicado: (2022) -
A short screening tool identifying systemic barriers to distress screening in cancer care
por: Simnacher, Felice, et al.
Publicado: (2023) -
Towards identifying cancer patients at risk to miss out on psycho‐oncological treatment via machine learning
por: Günther, Moritz Philipp, et al.
Publicado: (2022) -
Predictive Factors Associated with Declining Psycho-Oncological Support in Patients with Cancer
por: Hecht, Karoline, et al.
Publicado: (2023) -
Risk assessment for job burnout with a mobile health web application using questionnaire data: a proof of concept study
por: von Känel, Roland, et al.
Publicado: (2016)