Cargando…
ComBat Harmonization: Empirical Bayes versus fully Bayes approaches
Studying small effects or subtle neuroanatomical variation requires large-scale sample size data. As a result, combining neuroimaging data from multiple datasets is necessary. Variation in acquisition protocols, magnetic field strength, scanner build, and many other non-biologically related factors...
Autores principales: | Reynolds, Maxwell, Chaudhary, Tigmanshu, Eshaghzadeh Torbati, Mahbaneh, Tudorascu, Dana L., Batmanghelich, Kayhan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412957/ https://www.ncbi.nlm.nih.gov/pubmed/37506457 http://dx.doi.org/10.1016/j.nicl.2023.103472 |
Ejemplares similares
-
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2021) -
MISPEL: A supervised deep learning harmonization method for multi-scanner neuroimaging data
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2023) -
Improved generalized ComBat methods for harmonization of radiomic features
por: Horng, Hannah, et al.
Publicado: (2022) -
Application of Taxonomic Modeling to Microbiota Data Mining for Detection of Helminth Infection in Global Populations
por: Torbati, Mahbaneh Eshaghzadeh, et al.
Publicado: (2016) -
Bayes and empirical Bayes methods for data analysis /
por: Carlin, Bradley P.
Publicado: (2000)