Cargando…

Artificial Intelligence in the Pathology of Gastric Cancer

Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Sangjoon, Kim, Seokhwi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Gastric Cancer Association 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412971/
https://www.ncbi.nlm.nih.gov/pubmed/37553129
http://dx.doi.org/10.5230/jgc.2023.23.e25
Descripción
Sumario:Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.