Cargando…

A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon

Trace metals present in high amounts in aquatic systems are a perpetual concern. This study applied geostatistical and machine learning models namely Ordinary Kriging (OK), Ordinary Cokriging (OCK) and Artificial Neural Network (ANN) to assess the spatial variability of trace metals and pollution in...

Descripción completa

Detalles Bibliográficos
Autores principales: Abende Sayom, Reynolds Yvan, Mfenjou, Martin Luther, Ayiwouo Ngounouno, Mouhamed, Etoundi, Michele Maguy Cathya, Boroh, William André, Mambou Ngueyep, Luc Leroy, Meying, Arsene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413010/
https://www.ncbi.nlm.nih.gov/pubmed/37576237
http://dx.doi.org/10.1016/j.heliyon.2023.e18511
_version_ 1785087041341489152
author Abende Sayom, Reynolds Yvan
Mfenjou, Martin Luther
Ayiwouo Ngounouno, Mouhamed
Etoundi, Michele Maguy Cathya
Boroh, William André
Mambou Ngueyep, Luc Leroy
Meying, Arsene
author_facet Abende Sayom, Reynolds Yvan
Mfenjou, Martin Luther
Ayiwouo Ngounouno, Mouhamed
Etoundi, Michele Maguy Cathya
Boroh, William André
Mambou Ngueyep, Luc Leroy
Meying, Arsene
author_sort Abende Sayom, Reynolds Yvan
collection PubMed
description Trace metals present in high amounts in aquatic systems are a perpetual concern. This study applied geostatistical and machine learning models namely Ordinary Kriging (OK), Ordinary Cokriging (OCK) and Artificial Neural Network (ANN) to assess the spatial variability of trace metals and pollution indices in surface sediments along the Lom River in an abandoned gold mining site at Bekao (Adamawa Cameroon). For this purpose, thirty-one (31) surface sediment samples are collected in order to determine the total concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Sn and Zn. These trace metals are used to compute pollution indices as the sediment pollution index (SPI), the Nemerow index (NI), the modified contamination degree (mCD), and the potential ecological risk assessment (RI). OK, OCK and ANN models are compared to determine the best model performance. The best models are selected based on the values of the root mean square error (RMSE), the coefficient of determination (R(2)), the scatter index (SI) and the BIAS. Results showed that the sequence of trace metal mean concentrations in the sediments is Fe > Mn > Cu > Ni > Sn > Cr > Zn > Pb > As. The mean concentrations of Ni, Cu, Zn and Sn are above the average shale values (ASV) and the pollution status is globally moderate to significant with a low potential ecological risk. The spatial dependency obtained with semivariogram models are moderate to weak for Mn, Fe, Ni, Pb, SPI, NI, mCD, RI As, Cr, and Sn and strong for Cu and Zn. According to cross-validation parameters, ANN model is the best method for the prediction on trace metal concentrations and pollution indices in surface sediments along the Lom River in the abandoned gold mining site of Bekao.
format Online
Article
Text
id pubmed-10413010
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104130102023-08-11 A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon Abende Sayom, Reynolds Yvan Mfenjou, Martin Luther Ayiwouo Ngounouno, Mouhamed Etoundi, Michele Maguy Cathya Boroh, William André Mambou Ngueyep, Luc Leroy Meying, Arsene Heliyon Research Article Trace metals present in high amounts in aquatic systems are a perpetual concern. This study applied geostatistical and machine learning models namely Ordinary Kriging (OK), Ordinary Cokriging (OCK) and Artificial Neural Network (ANN) to assess the spatial variability of trace metals and pollution indices in surface sediments along the Lom River in an abandoned gold mining site at Bekao (Adamawa Cameroon). For this purpose, thirty-one (31) surface sediment samples are collected in order to determine the total concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Sn and Zn. These trace metals are used to compute pollution indices as the sediment pollution index (SPI), the Nemerow index (NI), the modified contamination degree (mCD), and the potential ecological risk assessment (RI). OK, OCK and ANN models are compared to determine the best model performance. The best models are selected based on the values of the root mean square error (RMSE), the coefficient of determination (R(2)), the scatter index (SI) and the BIAS. Results showed that the sequence of trace metal mean concentrations in the sediments is Fe > Mn > Cu > Ni > Sn > Cr > Zn > Pb > As. The mean concentrations of Ni, Cu, Zn and Sn are above the average shale values (ASV) and the pollution status is globally moderate to significant with a low potential ecological risk. The spatial dependency obtained with semivariogram models are moderate to weak for Mn, Fe, Ni, Pb, SPI, NI, mCD, RI As, Cr, and Sn and strong for Cu and Zn. According to cross-validation parameters, ANN model is the best method for the prediction on trace metal concentrations and pollution indices in surface sediments along the Lom River in the abandoned gold mining site of Bekao. Elsevier 2023-07-20 /pmc/articles/PMC10413010/ /pubmed/37576237 http://dx.doi.org/10.1016/j.heliyon.2023.e18511 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Research Article
Abende Sayom, Reynolds Yvan
Mfenjou, Martin Luther
Ayiwouo Ngounouno, Mouhamed
Etoundi, Michele Maguy Cathya
Boroh, William André
Mambou Ngueyep, Luc Leroy
Meying, Arsene
A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title_full A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title_fullStr A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title_full_unstemmed A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title_short A coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of Bekao, Adamawa, Cameroon
title_sort coupled geostatistical and machine learning approach to address spatial prediction of trace metals and pollution indices in sediments of the abandoned gold mining site of bekao, adamawa, cameroon
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413010/
https://www.ncbi.nlm.nih.gov/pubmed/37576237
http://dx.doi.org/10.1016/j.heliyon.2023.e18511
work_keys_str_mv AT abendesayomreynoldsyvan acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT mfenjoumartinluther acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT ayiwouongounounomouhamed acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT etoundimichelemaguycathya acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT borohwilliamandre acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT mamboungueyeplucleroy acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT meyingarsene acoupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT abendesayomreynoldsyvan coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT mfenjoumartinluther coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT ayiwouongounounomouhamed coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT etoundimichelemaguycathya coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT borohwilliamandre coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT mamboungueyeplucleroy coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon
AT meyingarsene coupledgeostatisticalandmachinelearningapproachtoaddressspatialpredictionoftracemetalsandpollutionindicesinsedimentsoftheabandonedgoldminingsiteofbekaoadamawacameroon