Cargando…
Natural language processing to convert unstructured COVID-19 chest-CT reports into structured reports
BACKGROUND: Structured reporting has been demonstrated to increase report completeness and to reduce error rate, also enabling data mining of radiological reports. Still, structured reporting is perceived by radiologists as a fragmented reporting style, limiting their freedom of expression. PURPOSE:...
Autores principales: | Fanni, Salvatore Claudio, Romei, Chiara, Ferrando, Giovanni, Volpi, Federica, D’Amore, Caterina Aida, Bedini, Claudio, Ubbiali, Sandro, Valentino, Salvatore, Neri, Emanuele |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413059/ https://www.ncbi.nlm.nih.gov/pubmed/37575311 http://dx.doi.org/10.1016/j.ejro.2023.100512 |
Ejemplares similares
-
Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges
por: Fanni, Salvatore Claudio, et al.
Publicado: (2023) -
New Updates of the Imaging Role in Diagnosis, Staging, and Response Treatment of Malignant Pleural Mesothelioma
por: Romei, Chiara, et al.
Publicado: (2021) -
The Use of Chest Magnetic Resonance Imaging in Malignant Pleural Mesothelioma Diagnosis
por: Volpi, Federica, et al.
Publicado: (2022) -
Deep learning to convert unstructured CT pulmonary angiography reports into structured reports
por: Spandorfer, Adam, et al.
Publicado: (2019) -
The Role of Radiomics in Salivary Gland Imaging: A Systematic Review and Radiomics Quality Assessment
por: Aringhieri, Giacomo, et al.
Publicado: (2022)