Cargando…
Quantum computing architectures with signaling and control mimicking biological processes
Earlier reports have described a quantum computing architecture, in which key elements are derived from control functions in biology. In this further continuing research, focus is on the signaling and control of a flow of qubits in that architecture, mimicking synapse signals and neurological contro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413076/ https://www.ncbi.nlm.nih.gov/pubmed/37576268 http://dx.doi.org/10.1016/j.heliyon.2023.e18593 |
_version_ | 1785087056652795904 |
---|---|
author | Pau, L.-F. Borza, P.N. |
author_facet | Pau, L.-F. Borza, P.N. |
author_sort | Pau, L.-F. |
collection | PubMed |
description | Earlier reports have described a quantum computing architecture, in which key elements are derived from control functions in biology. In this further continuing research, focus is on the signaling and control of a flow of qubits in that architecture, mimicking synapse signals and neurological controls. After a short description of that architecture, and of quantum sensing elements, it is first shown how the coloring of quantum particle flows, implemented as in mathematical colored algebras, can reduce decoherence and enhance the decidability of quantum processing elements. Next, after reviewing specific human biology functions, and exploiting experimental results on excitation modes in live animals, it is shown how to achieve separation of the quantum control & signaling signals. Technologies and designs from particle physics are discussed as well as open research issues towards a realization of a quantum computing architecture with decidable signaling. |
format | Online Article Text |
id | pubmed-10413076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104130762023-08-11 Quantum computing architectures with signaling and control mimicking biological processes Pau, L.-F. Borza, P.N. Heliyon Research Article Earlier reports have described a quantum computing architecture, in which key elements are derived from control functions in biology. In this further continuing research, focus is on the signaling and control of a flow of qubits in that architecture, mimicking synapse signals and neurological controls. After a short description of that architecture, and of quantum sensing elements, it is first shown how the coloring of quantum particle flows, implemented as in mathematical colored algebras, can reduce decoherence and enhance the decidability of quantum processing elements. Next, after reviewing specific human biology functions, and exploiting experimental results on excitation modes in live animals, it is shown how to achieve separation of the quantum control & signaling signals. Technologies and designs from particle physics are discussed as well as open research issues towards a realization of a quantum computing architecture with decidable signaling. Elsevier 2023-07-22 /pmc/articles/PMC10413076/ /pubmed/37576268 http://dx.doi.org/10.1016/j.heliyon.2023.e18593 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Pau, L.-F. Borza, P.N. Quantum computing architectures with signaling and control mimicking biological processes |
title | Quantum computing architectures with signaling and control mimicking biological processes |
title_full | Quantum computing architectures with signaling and control mimicking biological processes |
title_fullStr | Quantum computing architectures with signaling and control mimicking biological processes |
title_full_unstemmed | Quantum computing architectures with signaling and control mimicking biological processes |
title_short | Quantum computing architectures with signaling and control mimicking biological processes |
title_sort | quantum computing architectures with signaling and control mimicking biological processes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413076/ https://www.ncbi.nlm.nih.gov/pubmed/37576268 http://dx.doi.org/10.1016/j.heliyon.2023.e18593 |
work_keys_str_mv | AT paulf quantumcomputingarchitectureswithsignalingandcontrolmimickingbiologicalprocesses AT borzapn quantumcomputingarchitectureswithsignalingandcontrolmimickingbiologicalprocesses |