Cargando…
Capillary Electrophoresis with Interchangeable Cartridges for Versatile and Automated Analyses of Dried Blood Spot Samples
[Image: see text] A novel concept for highly versatile automated analyses of dried blood spot (DBS) samples by commercial capillary electrophoresis (CE) is presented. Two interchangeable CE cartridges with different fused-silica capillaries were used for the DBS elutions and the DBS eluate analyses,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413327/ https://www.ncbi.nlm.nih.gov/pubmed/37505089 http://dx.doi.org/10.1021/acs.analchem.3c02474 |
Sumario: | [Image: see text] A novel concept for highly versatile automated analyses of dried blood spot (DBS) samples by commercial capillary electrophoresis (CE) is presented. Two interchangeable CE cartridges with different fused-silica capillaries were used for the DBS elutions and the DBS eluate analyses, respectively. The application of one CE cartridge with a wide-bore capillary reduced DBS processing times to a minimum (1–2 min per sample) while fitting the other CE cartridge with a narrow-bore capillary served for highly efficient CE analyses. A comprehensive investigation of major variables affecting liquid handling in CE (capillary length, internal diameter, and temperature) was carried out with the aim of optimizing both procedures and enabling their maximum flexibility. The application of two CE cartridges also enabled the employment of CE detectors with different instrumental set-ups and/or principles as was demonstrated by the optical detection of nonsteroidal anti-inflammatory drugs (NSAIDs) and the conductivity detection of amino acids (AAs). The presented methods were optimized for the automated CE analyses of 36 DBS samples formed by a volumetric collection of 5 μL of capillary blood onto Whatman 903 discs and processed by direct in-vial elution using the CE instrument. The precision of liquid transfers for the automated DBS elutions was better than 0.9% and the precision of CE analyses did not exceed 5.1 and 12.3% for the determination of NSAIDs and AAs, respectively. Both methods were linear (R(2) ≥ 0.996) over the therapeutic (NSAIDs) and the endogenous (AAs) concentration ranges, had limits of quantification below the typical analyte concentrations in human blood, and achieved sample throughputs of more than 6 DBSs per hour. |
---|