Cargando…
Modeling of the Sintered Density in Cu-Al Alloy Using Machine Learning Approaches
[Image: see text] In powder metallurgy materials, sintered density in Cu-Al alloy plays a critical role in detecting mechanical properties. Experimental measurement of this property is costly and time-consuming. In this study, adaptive boosting decision tree, support vector regression, k-nearest nei...
Autores principales: | Asnaashari, Saleh, Shateri, Mohammadhadi, Hemmati-Sarapardeh, Abdolhossein, Band, Shahab S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413372/ https://www.ncbi.nlm.nih.gov/pubmed/37576653 http://dx.doi.org/10.1021/acsomega.2c07278 |
Ejemplares similares
-
Comparative Analysis of Machine Learning Models for Nanofluids Viscosity Assessment
por: Shateri, Mohammadhadi, et al.
Publicado: (2020) -
On the evaluation of the carbon dioxide solubility in polymers using gene expression programming
por: Amiri-Ramsheh, Behnam, et al.
Publicado: (2023) -
Modelling rate of penetration in drilling operations using RBF, MLP, LSSVM, and DT models
por: Riazi, Mohsen, et al.
Publicado: (2022) -
Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches
por: Nakhaei-Kohani, Reza, et al.
Publicado: (2022) -
Modeling of H(2)S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches
por: Mousavi, Seyed-Pezhman, et al.
Publicado: (2023)