Cargando…
Seasonality of acute kidney injury phenotypes in England: an unsupervised machine learning classification study of electronic health records
BACKGROUND: Acute Kidney Injury (AKI) is a multifactorial condition which presents a substantial burden to healthcare systems. There is limited evidence on whether it is seasonal. We sought to investigate the seasonality of AKI hospitalisations in England and use unsupervised machine learning to exp...
Autores principales: | Bolt, Hikaru, Suffel, Anne, Matthewman, Julian, Sandmann, Frank, Tomlinson, Laurie, Eggo, Rosalind |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413486/ https://www.ncbi.nlm.nih.gov/pubmed/37558976 http://dx.doi.org/10.1186/s12882-023-03269-0 |
Ejemplares similares
-
Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
por: Nagamine, Tasha, et al.
Publicado: (2020) -
Meibography Phenotyping and Classification From Unsupervised Discriminative Feature Learning
por: Yeh, Chun-Hsiao, et al.
Publicado: (2021) -
Unsupervised domain adaptation for automated knee osteoarthritis phenotype classification
por: Zhong, Junru, et al.
Publicado: (2023) -
Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United States
por: Eggo, Rosalind M., et al.
Publicado: (2011) -
Digging deep into Golgi phenotypic diversity with unsupervised machine learning
por: Hussain, Shaista, et al.
Publicado: (2017)