Cargando…

A Culex quinquefasciatus strain resistant to the binary toxin from Lysinibacillus sphaericus displays altered enzyme activities and energy reserves

BACKGROUND: The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin’s receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Menezes, Heverly Suzany G., Costa-Latgé, Samara G., Genta, Fernando A., Napoleão, Thiago H., Paiva, Patrícia M. G., Romão, Tatiany P., Silva-Filha, Maria Helena N. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413512/
https://www.ncbi.nlm.nih.gov/pubmed/37559134
http://dx.doi.org/10.1186/s13071-023-05893-z
Descripción
Sumario:BACKGROUND: The resistance of a Culex quinquefasciatus strain to the binary (Bin) larvicidal toxin from Lysinibacillus sphaericus is due to the lack of expression of the toxin’s receptors, the membrane-bound Cqm1 α-glucosidases. A previous transcriptomic profile of the resistant larvae showed differentially expressed genes coding Cqm1, lipases, proteases and other genes involved in lipid and carbohydrate metabolism. This study aimed to investigate the metabolic features of Bin-resistant individuals by comparing the activity of some enzymes, energy reserves, fertility and fecundity to a susceptible strain. METHODS: The activity of specific enzymes was recorded in midgut samples from resistant and susceptible larvae. The amount of lipids and reducing sugars was determined for larvae and adults from both strains. Additionally, the fecundity and fertility parameters of these strains under control and stress conditions were examined. RESULTS: Enzyme assays showed that the esterase activities in the midgut of resistant larvae were significantly lower than susceptible ones using acetyl-, butyryl- and heptanoyl-methylumbelliferyl esthers as substrates. The α-glucosidase activity was also reduced in resistant larvae using sucrose and a synthetic substrate. No difference in protease activities as trypsins, chymotrypsins and aminopeptidases was detected between resistant and susceptible larvae. In larval and adult stages, the resistant strain showed an altered profile of energy reserves characterized by significantly reduced levels of lipids and a greater amount of reducing sugars. The fertility and fecundity of females were similar for both strains, indicating that those changes in energy reserves did not affect these reproductive parameters. CONCLUSIONS: Our dataset showed that Bin-resistant insects display differential metabolic features co-selected with the phenotype of resistance that can potentially have effects on mosquito fitness, in particular, due to the reduced lipid accumulation. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13071-023-05893-z.