Cargando…
Deep learning-based framework for real-time upper limb motion intention classification using combined bio-signals
This research study proposes a unique framework that takes input from a surface electromyogram (sEMG) and functional near-infrared spectroscopy (fNIRS) bio-signals. These signals are trained using convolutional neural networks (CNN). The framework entails a real-time neuro-machine interface to decod...
Autores principales: | Syed, A. Usama, Sattar, Neelum Y., Ganiyu, Ismaila, Sanjay, Chintakindi, Alkhatib, Soliman, Salah, Bashir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413572/ https://www.ncbi.nlm.nih.gov/pubmed/37575360 http://dx.doi.org/10.3389/fnbot.2023.1174613 |
Ejemplares similares
-
fNIRS-Based Upper Limb Motion Intention Recognition Using an Artificial Neural Network for Transhumeral Amputees
por: Sattar, Neelum Yousaf, et al.
Publicado: (2022) -
Prediction of Motion Intentions as a Novel Method of Upper Limb Rehabilitation Support
por: Lewandowski, Bogusz, et al.
Publicado: (2021) -
FMG- and RNN-Based Estimation of Motor Intention of Upper-Limb Motion in Human-Robot Collaboration
por: Anvaripour, Mohammad, et al.
Publicado: (2020) -
Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots
por: Yang, Sibo, et al.
Publicado: (2023) -
Classification of Upper Limb Motions from Around-Shoulder Muscle Activities: Hand Biofeedback
por: González, Jose, et al.
Publicado: (2010)