Cargando…
Jaynes-Cummings interaction between low-energy free electrons and cavity photons
The Jaynes-Cummings Hamiltonian is at the core of cavity quantum electrodynamics; however, it relies on bound-electron emitters fundamentally limited by the binding Coulomb potential. In this work, we propose theoretically a new approach to realizing the Jaynes-Cummings model using low-energy free e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413651/ https://www.ncbi.nlm.nih.gov/pubmed/37256955 http://dx.doi.org/10.1126/sciadv.adh2425 |
Sumario: | The Jaynes-Cummings Hamiltonian is at the core of cavity quantum electrodynamics; however, it relies on bound-electron emitters fundamentally limited by the binding Coulomb potential. In this work, we propose theoretically a new approach to realizing the Jaynes-Cummings model using low-energy free electrons coupled to dielectric microcavities and exemplify several quantum technologies made possible by this approach. Using quantum recoil, a large detuning inhibits the emission of multiple consecutive photons, effectively transforming the free electron into a few-level system coupled to the cavity mode. We show that this approach can be used for generation of single photons, photon pairs, and even a quantum SWAP gate between a photon and a free electron, with unity efficiency and high fidelity. Tunable by their kinetic energy, quantum free electrons are inherently versatile emitters with an engineerable emission wavelength. Hence, they pave the way toward new possibilities for quantum interconnects between photonic platforms at disparate spectral regimes. |
---|