Cargando…
PiNNwall: Heterogeneous Electrode Models from Integrating Machine Learning and Atomistic Simulation
[Image: see text] Electrochemical energy storage always involves the capacitive process. The prevailing electrode model used in the molecular simulation of polarizable electrode–electrolyte systems is the Siepmann–Sprik model developed for perfect metal electrodes. This model has been recently exten...
Autores principales: | Dufils, Thomas, Knijff, Lisanne, Shao, Yunqi, Zhang, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413855/ https://www.ncbi.nlm.nih.gov/pubmed/37477645 http://dx.doi.org/10.1021/acs.jctc.3c00359 |
Ejemplares similares
-
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications
por: Morawietz, Tobias, et al.
Publicado: (2020) -
Reaction prediction via atomistic simulation: from quantum mechanics to machine learning
por: Kang, Pei-Lin, et al.
Publicado: (2020) -
Towards an atomistic understanding of disordered carbon electrode materials
por: Deringer, Volker L., et al.
Publicado: (2018) -
Robustness of Local
Predictions in Atomistic Machine
Learning Models
por: Chong, Sanggyu, et al.
Publicado: (2023)