Cargando…

Linear-Scaling Quantum Circuits for Computational Chemistry

[Image: see text] We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput.2023, 19, 82236656643]. Here, we present approximations of these circuits that substantial...

Descripción completa

Detalles Bibliográficos
Autores principales: Magoulas, Ilias, Evangelista, Francesco A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413858/
https://www.ncbi.nlm.nih.gov/pubmed/37410884
http://dx.doi.org/10.1021/acs.jctc.3c00376
Descripción
Sumario:[Image: see text] We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput.2023, 19, 82236656643]. Here, we present approximations of these circuits that substantially reduce the CNOT counts even further. Our preliminary numerical data, using the selected projective quantum eigensolver approach, show up to a 4-fold reduction in CNOTs. At the same time, there is practically no loss of accuracy in the energies compared to the parent implementation, while the ensuing symmetry breaking is essentially negligible.