Cargando…

Linear-Scaling Quantum Circuits for Computational Chemistry

[Image: see text] We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput.2023, 19, 82236656643]. Here, we present approximations of these circuits that substantial...

Descripción completa

Detalles Bibliográficos
Autores principales: Magoulas, Ilias, Evangelista, Francesco A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413858/
https://www.ncbi.nlm.nih.gov/pubmed/37410884
http://dx.doi.org/10.1021/acs.jctc.3c00376
_version_ 1785087221028618240
author Magoulas, Ilias
Evangelista, Francesco A.
author_facet Magoulas, Ilias
Evangelista, Francesco A.
author_sort Magoulas, Ilias
collection PubMed
description [Image: see text] We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput.2023, 19, 82236656643]. Here, we present approximations of these circuits that substantially reduce the CNOT counts even further. Our preliminary numerical data, using the selected projective quantum eigensolver approach, show up to a 4-fold reduction in CNOTs. At the same time, there is practically no loss of accuracy in the energies compared to the parent implementation, while the ensuing symmetry breaking is essentially negligible.
format Online
Article
Text
id pubmed-10413858
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104138582023-08-11 Linear-Scaling Quantum Circuits for Computational Chemistry Magoulas, Ilias Evangelista, Francesco A. J Chem Theory Comput [Image: see text] We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput.2023, 19, 82236656643]. Here, we present approximations of these circuits that substantially reduce the CNOT counts even further. Our preliminary numerical data, using the selected projective quantum eigensolver approach, show up to a 4-fold reduction in CNOTs. At the same time, there is practically no loss of accuracy in the energies compared to the parent implementation, while the ensuing symmetry breaking is essentially negligible. American Chemical Society 2023-07-06 /pmc/articles/PMC10413858/ /pubmed/37410884 http://dx.doi.org/10.1021/acs.jctc.3c00376 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Magoulas, Ilias
Evangelista, Francesco A.
Linear-Scaling Quantum Circuits for Computational Chemistry
title Linear-Scaling Quantum Circuits for Computational Chemistry
title_full Linear-Scaling Quantum Circuits for Computational Chemistry
title_fullStr Linear-Scaling Quantum Circuits for Computational Chemistry
title_full_unstemmed Linear-Scaling Quantum Circuits for Computational Chemistry
title_short Linear-Scaling Quantum Circuits for Computational Chemistry
title_sort linear-scaling quantum circuits for computational chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413858/
https://www.ncbi.nlm.nih.gov/pubmed/37410884
http://dx.doi.org/10.1021/acs.jctc.3c00376
work_keys_str_mv AT magoulasilias linearscalingquantumcircuitsforcomputationalchemistry
AT evangelistafrancescoa linearscalingquantumcircuitsforcomputationalchemistry