Cargando…
SiteFerret: Beyond Simple Pocket Identification in Proteins
[Image: see text] We present a novel method for the automatic detection of pockets on protein molecular surfaces. The algorithm is based on an ad hoc hierarchical clustering of virtual probe spheres obtained from the geometrical primitives used by the NanoShaper software to build the solvent-exclude...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413863/ https://www.ncbi.nlm.nih.gov/pubmed/37470784 http://dx.doi.org/10.1021/acs.jctc.2c01306 |
Sumario: | [Image: see text] We present a novel method for the automatic detection of pockets on protein molecular surfaces. The algorithm is based on an ad hoc hierarchical clustering of virtual probe spheres obtained from the geometrical primitives used by the NanoShaper software to build the solvent-excluded molecular surface. The final ranking of putative pockets is based on the Isolation Forest method, an unsupervised learning approach originally developed for anomaly detection. A detailed importance analysis of pocket features provides insight into which geometrical (clustering) and chemical (amino acidic composition) properties characterize a good binding site. The method also provides a segmentation of pockets into smaller subpockets. We prove that subpockets are a convenient representation to pinpoint the binding site with great precision. SiteFerret is outstanding in its versatility, accurately predicting a wide range of binding sites, from those binding small molecules to those binding peptides, including difficult shallow sites. |
---|