Cargando…

Saltatory conduction and intrinsic electrophysiological properties at the nodes of ranvier of Aα/β-afferent fibers and Aα-efferent fibers in rat sciatic nerves

Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (...

Descripción completa

Detalles Bibliográficos
Autores principales: Tonomura, Sotatsu, Gu, Jianguo G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413906/
https://www.ncbi.nlm.nih.gov/pubmed/37369680
http://dx.doi.org/10.1177/17448069231187366
Descripción
Sumario:Large-diameter myelinated fibers in sciatic nerves are composed of both Aα/β-afferent fibers and Aα-efferent fibers to convey sensory and motor impulses, respectively, via saltatory conduction for rapid leg responses. Saltatory conduction and electrophysiological properties at the nodes of Ranvier (NRs) of these sciatic nerve fibers have not been directly studied. We used ex vivo sciatic nerve preparations from rats and applied patch-clamp recordings at the NRs of both Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves to characterize their saltatory conduction and intrinsic electrophysiological properties. The velocity and frequency of saltatory conduction in both types of fibers were similar. Resting membrane potentials (RMPs), input resistance, action potential (AP) threshold, and AP rheobase were also not significantly different at the NRs of the two types of fibers in the sciatic nerves. In comparison with Aα/β-afferent fibers, Aα-efferent fibers in the sciatic nerves show higher amplitude and broader width of APs at their NRs. At the NRs of both types of fibers, depolarizing voltages evoked transient inward currents followed by non-inactivating outward currents, and the inward currents and non-inactivating outward currents at the NRs were not significantly different between the two types of fibers. Using AP-clamp, inward currents during AP upstroke were found to be insignificant difference, but amplitudes of non-inactivating outward currents during AP repolarization were significantly lower at the NRs of Aα-efferent fibers than at the NRs of Aα/β-afferent fibers in the sciatic nerves. Collectively, saltatory conduction, ionic currents, and intrinsic electrophysiological properties at the NRs of Aα/β-afferent fibers and Aα-efferent fibers in the sciatic nerves are generally similar, but some differences were also observed.