Cargando…

In vivo polarisation sensitive optical coherence tomography for fibrosis assessment in interstitial lung disease: a prospective, exploratory, observational study

INTRODUCTION: Endobronchial polarisation sensitive optical coherence tomography (EB-PS-OCT) is a bronchoscopic imaging technique exceeding resolution of high-resolution CT (HRCT) by 50-fold. It detects collagen birefringence, enabling identification and quantification of fibrosis. STUDY AIM: To asse...

Descripción completa

Detalles Bibliográficos
Autores principales: Vaselli, Margherita, Kalverda-Mooij, Kirsten, Thunnissen, Erik, Tanck, Michael W T, Mets, Onno M, van den Berk, Inge A H, Annema, Jouke T, Bonta, Peter I, de Boer, Johannes F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414088/
https://www.ncbi.nlm.nih.gov/pubmed/37553184
http://dx.doi.org/10.1136/bmjresp-2023-001628
Descripción
Sumario:INTRODUCTION: Endobronchial polarisation sensitive optical coherence tomography (EB-PS-OCT) is a bronchoscopic imaging technique exceeding resolution of high-resolution CT (HRCT) by 50-fold. It detects collagen birefringence, enabling identification and quantification of fibrosis. STUDY AIM: To assess pulmonary fibrosis in interstitial lung diseases (ILD) patients with in vivo EB-PS-OCT using histology as reference standard. PRIMARY OBJECTIVE: Visualisation and quantification of pulmonary fibrosis by EB-PS-OCT. SECONDARY OBJECTIVES: Comparison of EB-PS-OCT and HRCT detected fibrosis with histology, identification of ILD histological features in EB-PS-OCT images and comparison of ex vivo PS-OCT results with histology. METHODS: Observational prospective exploratory study. Patients with ILD scheduled for transbronchial cryobiopsy or surgical lung biopsy underwent in vivo EB-PS-OCT imaging prior to tissue acquisition. Asthma patients were included as non-fibrotic controls. Per imaged lung segment, fibrosis was automatically quantified assessing the birefringent area in EB-PS-OCT images. Fibrotic extent in corresponding HRCT areas and biopsies were compared with EB-PS-OCT detected fibrosis. Microscopic ILD features were identified on EB-PS-OCT images and matched with biopsies from the same segment. RESULTS: 19 patients were included (16 ILD; 3 asthma). In 49 in vivo imaged airway segments the parenchymal birefringent area was successfully quantified and ranged from 2.54% (no to minimal fibrosis) to 21.01% (extensive fibrosis). Increased EB-PS-OCT detected birefringent area corresponded to increased histologically confirmed fibrosis, with better predictive value than HRCT. Microscopic ILD features were identified on both in vivo and ex vivo PS-OCT images. CONCLUSIONS: EB-PS-OCT enables pulmonary fibrosis quantification, thereby has potential to serve as an add-on bronchoscopic imaging technique to diagnose and detect (early) fibrosis in ILD.