Cargando…
Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study
BACKGROUND: Researching people with herpes simplex virus (HSV) is challenging because of poor data quality, low user engagement, and concerns around stigma and anonymity. OBJECTIVE: This project aimed to improve data collection for a real-world HSV registry by identifying predictors of HSV infection...
Autores principales: | Surodina, Svitlana, Lam, Ching, Grbich, Svetislav, Milne-Ives, Madison, van Velthoven, Michelle, Meinert, Edward |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414389/ https://www.ncbi.nlm.nih.gov/pubmed/37725536 http://dx.doi.org/10.2196/25560 |
Ejemplares similares
-
Authors’ Response to Peer Reviews of “Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study”
por: Surodina, Svitlana, et al.
Publicado: (2021) -
Engineering Requirements of a Herpes Simplex Virus Patient Registry: Discovery Phase of a Real-World Evidence Platform to Advance Pharmacogenomics and Personalized Medicine
por: Surodina, Svitlana, et al.
Publicado: (2019) -
Agile Requirements Engineering and Software Planning for a Digital Health Platform to Engage the Effects of Isolation Caused by Social Distancing: Case Study
por: Meinert, Edward, et al.
Publicado: (2020) -
The Impact of Brexit on the Pharmaceutical Supply Chain of the United Kingdom: Scoping Review Protocol
por: Milne-Ives, Madison, et al.
Publicado: (2020) -
Mobile Fitness and Weight Management Apps: Protocol for a Quality Evaluation
por: Milne-Ives, Madison, et al.
Publicado: (2020)