Cargando…

Agonistic antibacterial potential of Loigolactobacillus coryniformis BCH-4 metabolites against selected human pathogenic bacteria: An in vitro and in silico approach

Lactic acid bacteria are known to produce numerous antibacterial metabolites that are active against various pathogenic microbes. In this study, bioactive metabolites from the cell free supernatant of Loigolactobacillus coryniformis BCH-4 were obtained by liquid-liquid extraction, using ethyl acetat...

Descripción completa

Detalles Bibliográficos
Autores principales: Tariq, Anam, Salman, Mahwish, Mustafa, Ghulam, Tawab, Abdul, Naheed, Shazia, Naz, Hafsa, Shahid, Misbah, Ali, Hazrat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414564/
https://www.ncbi.nlm.nih.gov/pubmed/37561679
http://dx.doi.org/10.1371/journal.pone.0289723
Descripción
Sumario:Lactic acid bacteria are known to produce numerous antibacterial metabolites that are active against various pathogenic microbes. In this study, bioactive metabolites from the cell free supernatant of Loigolactobacillus coryniformis BCH-4 were obtained by liquid-liquid extraction, using ethyl acetate, followed by fractionation, using silica gel column chromatography. The collected F23 fraction effectively inhibited the growth of pathogenic bacteria (Escherichia coli, Bacillus cereus, and Staphylococcus aureus) by observing the minimum inhibitory concentration (MIC) and minimum bactericidal concentrations (MBC). The evaluated values of MIC were 15.6 ± 0.34, 3.9 ± 0.59, and 31.2 ± 0.67 μg/mL and MBC were 15.6 ± 0.98, 7.8 ± 0.45, and 62.5 ± 0.23 μg/mL respectively, against the above-mentioned pathogenic bacteria. The concentration of F23 fraction was varying from 1000 to 1.9 μg/mL. Furthermore, the fraction also exhibited sustainable biofilm inhibition. Using the Electrospray Ionization Mass Spectrometry (ESI-MS/MS), the metabolites present in the bioactive fraction (F23), were identified as phthalic acid, myristic acid, mangiferin, 16-hydroxylpalmatic acid, apigenin, and oleandomycin. By using in silico approach, docking analysis showed good interaction of identified metabolites and receptor proteins of pathogenic bacteria. The present study suggested Loigolactobacillus coryniformis BCH-4, as a promising source of natural bioactive metabolites which may receive great benefit as potential sources of drugs in the pharmacological sector.