Cargando…
Gene regulatory network inference using mixed-norms regularized multivariate model with covariance selection
Despite extensive research efforts, reconstruction of gene regulatory networks (GRNs) from transcriptomics data remains a pressing challenge in systems biology. While non-linear approaches for reconstruction of GRNs show improved performance over simpler alternatives, we do not yet have understandin...
Autores principales: | Mbebi, Alain J., Nikoloski, Zoran |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414675/ https://www.ncbi.nlm.nih.gov/pubmed/37523414 http://dx.doi.org/10.1371/journal.pcbi.1010832 |
Ejemplares similares
-
L(2,1)-norm regularized multivariate regression model with applications to genomic prediction
por: Mbebi, Alain J, et al.
Publicado: (2021) -
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016) -
Mixed-Norm Regularization for Brain Decoding
por: Flamary, R., et al.
Publicado: (2014) -
Genotype–covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model
por: Ni, Guiyan, et al.
Publicado: (2019) -
Mixed‐type multivariate response regression with covariance estimation
por: Ekvall, Karl Oskar, et al.
Publicado: (2022)