Cargando…
Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat
Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414991/ https://www.ncbi.nlm.nih.gov/pubmed/37577032 http://dx.doi.org/10.3389/ftox.2023.1216388 |
_version_ | 1785087422188486656 |
---|---|
author | Schkoda, Stacy Horman, Brian Witchey, Shannah K. Jansson, Anton Macari, Soraia Patisaul, Heather B. |
author_facet | Schkoda, Stacy Horman, Brian Witchey, Shannah K. Jansson, Anton Macari, Soraia Patisaul, Heather B. |
author_sort | Schkoda, Stacy |
collection | PubMed |
description | Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues. |
format | Online Article Text |
id | pubmed-10414991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-104149912023-08-11 Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat Schkoda, Stacy Horman, Brian Witchey, Shannah K. Jansson, Anton Macari, Soraia Patisaul, Heather B. Front Toxicol Toxicology Introduction: Accumulating evidence reveals that endocrine disrupting chemicals (EDCs) can disrupt aspects of metabolic programming, suggesting that skeletal development may be at risk, a possibility that is rarely examined. The commercial flame retardant (FR) mixture, Firemaster 550 (FM 550), has repeatedly been shown to negatively influence metabolic programming, raising concerns that skeletal integrity may consequently be impaired. We have previously shown that gestational and lactational exposure to 1,000 µg FM 550 negatively affected sex-specific skeletal traits in male, but not female, rats assessed at 6 months of age. Whether this outcome is primarily driven by the brominated (BFR) or organophosphate ester (OPFR) portions of the mixture or the effects persist to older ages is unknown. Materials and methods: To address this, in the present study, dams were orally exposed throughout gestation and lactation to either 1,000 μg BFR, 1,000 µg OPFR, or 2,000 µg FM 550. Offspring (n = 8/sex/exposure) were weaned at PND 21 and assessed for femoral cortical and trabecular bone parameters at 8 months of age by high-resolution X-ray micro-computed tomography (micro-CT). Serum levels of serotonin, osteocalcin, alkaline phosphatase, and calcium were quantified. Results: FM 550 affected both sexes, but the females were more appreciably impacted by the OPFRs, while the males were more vulnerable to the BFRs. Conclusion: Although sex specificity was expected due to the sexual dimorphic nature of skeletal physiology, the mechanisms accounting for the male- and female-specific phenotypes remain to be determined. Future work aims to clarify these unresolved issues. Frontiers Media S.A. 2023-07-27 /pmc/articles/PMC10414991/ /pubmed/37577032 http://dx.doi.org/10.3389/ftox.2023.1216388 Text en Copyright © 2023 Schkoda, Horman, Witchey, Jansson, Macari and Patisaul. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Toxicology Schkoda, Stacy Horman, Brian Witchey, Shannah K. Jansson, Anton Macari, Soraia Patisaul, Heather B. Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title | Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title_full | Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title_fullStr | Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title_full_unstemmed | Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title_short | Skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult Wistar rat |
title_sort | skeletal effects following developmental flame-retardant exposure are specific to sex and chemical class in the adult wistar rat |
topic | Toxicology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10414991/ https://www.ncbi.nlm.nih.gov/pubmed/37577032 http://dx.doi.org/10.3389/ftox.2023.1216388 |
work_keys_str_mv | AT schkodastacy skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat AT hormanbrian skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat AT witcheyshannahk skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat AT janssonanton skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat AT macarisoraia skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat AT patisaulheatherb skeletaleffectsfollowingdevelopmentalflameretardantexposurearespecifictosexandchemicalclassintheadultwistarrat |