Cargando…

Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis

Lipid mobilization through fatty acid β-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where β-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about t...

Descripción completa

Detalles Bibliográficos
Autores principales: Enkler, Ludovic, Szentgyörgyi, Viktoria, Pennauer, Mirjam, Prescianotto-Baschong, Cristina, Riezman, Isabelle, Wiesyk, Aneta, Avraham, Reut Ester, Spiess, Martin, Zalckvar, Einat, Kucharczyk, Roza, Riezman, Howard, Spang, Anne
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415182/
https://www.ncbi.nlm.nih.gov/pubmed/37400497
http://dx.doi.org/10.1038/s41556-023-01180-2
_version_ 1785087468576440320
author Enkler, Ludovic
Szentgyörgyi, Viktoria
Pennauer, Mirjam
Prescianotto-Baschong, Cristina
Riezman, Isabelle
Wiesyk, Aneta
Avraham, Reut Ester
Spiess, Martin
Zalckvar, Einat
Kucharczyk, Roza
Riezman, Howard
Spang, Anne
author_facet Enkler, Ludovic
Szentgyörgyi, Viktoria
Pennauer, Mirjam
Prescianotto-Baschong, Cristina
Riezman, Isabelle
Wiesyk, Aneta
Avraham, Reut Ester
Spiess, Martin
Zalckvar, Einat
Kucharczyk, Roza
Riezman, Howard
Spang, Anne
author_sort Enkler, Ludovic
collection PubMed
description Lipid mobilization through fatty acid β-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where β-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in β-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although β-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1’s role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites.
format Online
Article
Text
id pubmed-10415182
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-104151822023-08-12 Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis Enkler, Ludovic Szentgyörgyi, Viktoria Pennauer, Mirjam Prescianotto-Baschong, Cristina Riezman, Isabelle Wiesyk, Aneta Avraham, Reut Ester Spiess, Martin Zalckvar, Einat Kucharczyk, Roza Riezman, Howard Spang, Anne Nat Cell Biol Article Lipid mobilization through fatty acid β-oxidation is a central process essential for energy production during nutrient shortage. In yeast, this catabolic process starts in the peroxisome from where β-oxidation products enter mitochondria and fuel the tricarboxylic acid cycle. Little is known about the physical and metabolic cooperation between these organelles. Here we found that expression of fatty acid transporters and of the rate-limiting enzyme involved in β-oxidation is decreased in cells expressing a hyperactive mutant of the small GTPase Arf1, leading to an accumulation of fatty acids in lipid droplets. Consequently, mitochondria became fragmented and ATP synthesis decreased. Genetic and pharmacological depletion of fatty acids phenocopied the arf1 mutant mitochondrial phenotype. Although β-oxidation occurs in both mitochondria and peroxisomes in mammals, Arf1’s role in fatty acid metabolism is conserved. Together, our results indicate that Arf1 integrates metabolism into energy production by regulating fatty acid storage and utilization, and presumably organelle contact sites. Nature Publishing Group UK 2023-07-03 2023 /pmc/articles/PMC10415182/ /pubmed/37400497 http://dx.doi.org/10.1038/s41556-023-01180-2 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Enkler, Ludovic
Szentgyörgyi, Viktoria
Pennauer, Mirjam
Prescianotto-Baschong, Cristina
Riezman, Isabelle
Wiesyk, Aneta
Avraham, Reut Ester
Spiess, Martin
Zalckvar, Einat
Kucharczyk, Roza
Riezman, Howard
Spang, Anne
Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title_full Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title_fullStr Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title_full_unstemmed Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title_short Arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
title_sort arf1 coordinates fatty acid metabolism and mitochondrial homeostasis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415182/
https://www.ncbi.nlm.nih.gov/pubmed/37400497
http://dx.doi.org/10.1038/s41556-023-01180-2
work_keys_str_mv AT enklerludovic arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT szentgyorgyiviktoria arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT pennauermirjam arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT prescianottobaschongcristina arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT riezmanisabelle arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT wiesykaneta arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT avrahamreutester arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT spiessmartin arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT zalckvareinat arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT kucharczykroza arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT riezmanhoward arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis
AT spanganne arf1coordinatesfattyacidmetabolismandmitochondrialhomeostasis