Cargando…
Assessing individual risk and the latent transmission of COVID-19 in a population with an interaction-driven temporal model
Interaction-driven modeling of diseases over real-world contact data has been shown to promote the understanding of the spread of diseases in communities. This temporal modeling follows the path-preserving order and timing of the contacts, which are essential for accurate modeling. Yet, other import...
Autores principales: | Marmor, Yanir, Abbey, Alex, Shahar, Yuval, Mokryn, Osnat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415258/ https://www.ncbi.nlm.nih.gov/pubmed/37563358 http://dx.doi.org/10.1038/s41598-023-39817-9 |
Ejemplares similares
-
Analysis of the competition among viral strains using a temporal interaction-driven contagion model
por: Abbey, Alex, et al.
Publicado: (2022) -
A statistical model for early estimation of the prevalence and severity of an epidemic or pandemic from simple tests for infection confirmation
por: Shahar, Yuval, et al.
Publicado: (2023) -
The Role of Temporal Trends in Growing Networks
por: Mokryn, Osnat, et al.
Publicado: (2016) -
Using Domain Based Latent Personal Analysis of B Cell Clone Diversity Patterns to Identify Novel Relationships Between the B Cell Clone Populations in Different Tissues
por: Alon, Uri, et al.
Publicado: (2021) -
Size agnostic change point detection framework for evolving networks
por: Miller, Hadar, et al.
Publicado: (2020)