Cargando…
Long operating lifetime mid-infrared LEDs based on black phosphorus
Black phosphorus (BP) is a narrow bandgap layered semiconductor promising for mid-infrared optoelectronic applications. BP-based devices have been shown to surpass state-of-the-art mid-infrared detectors and light-emitting diodes (LEDs) in terms of performance. Despite their device advantages, the m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415361/ https://www.ncbi.nlm.nih.gov/pubmed/37563157 http://dx.doi.org/10.1038/s41467-023-40602-5 |
Sumario: | Black phosphorus (BP) is a narrow bandgap layered semiconductor promising for mid-infrared optoelectronic applications. BP-based devices have been shown to surpass state-of-the-art mid-infrared detectors and light-emitting diodes (LEDs) in terms of performance. Despite their device advantages, the material’s inherent instability in the air could hinder its use in practical optoelectronic applications. Here, we investigated the impact of passivation on the device lifetime of BP LEDs, which deteriorate in a matter of seconds without using passivation. The lifetime is significantly extended with an Al(2)O(3) passivation layer and nitrogen packaging via atomic layer deposition and ultra-violet curable resin sealing. The operational lifetime (half-life) at room temperature is extrapolated to be ~15,000 h with an initial power density of 340 mW/cm(2) based on accelerated life testing. The present results indicate that efficient BP optoelectronics can be highly robust through simple and scalable packaging technologies, with important practical implications for mid-infrared applications. |
---|