Cargando…
Weyl’s Law for the Steklov Problem on Surfaces with Rough Boundary
The validity of Weyl’s law for the Steklov problem on domains with Lipschitz boundary is a well-known open question in spectral geometry. We answer this question in two dimensions and show that Weyl’s law holds for an even larger class of surfaces with rough boundaries. This class includes domains w...
Autores principales: | Karpukhin, Mikhail, Lagacé, Jean, Polterovich, Iosif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415495/ https://www.ncbi.nlm.nih.gov/pubmed/37576945 http://dx.doi.org/10.1007/s00205-023-01912-6 |
Ejemplares similares
-
From Steklov to Neumann via homogenisation
por: Girouard, Alexandre, et al.
Publicado: (2020) -
Boundary value problems, Weyl functions, and differential operators
por: Behrndt, Jussi, et al.
Publicado: (2020) -
The Riemann-Hilbert problem: a publication from the Steklov institute of mathematics adviser Armen Sergeev
por: Anosov, D V, et al.
Publicado: (1994) -
Evaluation Algorithm of Root Canal Shape Based on Steklov Spectrum Analysis
por: Wu, Dongqing, et al.
Publicado: (2019) -
Electromagnetic scattering laws in Weyl systems
por: Zhou, Ming, et al.
Publicado: (2017)