Cargando…

Alleviation of D-gal-induced senile liver injury by Rg3, a signature component of red ginseng

To investigate the mechanism by which ginsenoside Rg3 regulates oxidative stress (OS) and inflammation through NF/KB pathway to delay mouse liver injury. This work randomized Balbc mice as four groups: Normal, D-gal, Rg3-L, Rg3-H. Paraffin-embedded liver tissue sections were prepared, later, BAX/BCL...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ke, Hu, Biwen, Ding, Xuhui, Zhan, Zhengyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415550/
https://www.ncbi.nlm.nih.gov/pubmed/37348025
http://dx.doi.org/10.18632/aging.204819
Descripción
Sumario:To investigate the mechanism by which ginsenoside Rg3 regulates oxidative stress (OS) and inflammation through NF/KB pathway to delay mouse liver injury. This work randomized Balbc mice as four groups: Normal, D-gal, Rg3-L, Rg3-H. Paraffin-embedded liver tissue sections were prepared, later, BAX/BCL-2 protein expression was observed by HE, Sirius red, TUNEL and immunofluorescence to detect apoptotic injury and α-SMA/TGF-β protein expression to detect fibrosis, and liver inflammation-related protein NF-KB was detected. HE and TUNEL staining showed that Rg3 reduced necrotic cells and fibrosis in liver-injured mice, Rg3 increased anti-inflammatory cytokine IL-18 and reduced TNF-α, IL-1β and IL-6 expression. Conclusion: Ginsenoside Rg3 can effectively antagonize D-gal’s role in mouse liver injury, and its mechanism may be associated with regulating inflammatory pathway by Rg.