Cargando…

Exosome-coated polydatin nanoparticles in the treatment of radiation-induced intestinal damage

This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (h...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Qiu, Yao, Lei, Liu, Quanbin, Hou, Jun, Qiu, Xinyu, Chen, Mengyuan, Wu, Zhuojun, Hu, Duanmin, Cui, Fengmei, Yan, Tao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415572/
https://www.ncbi.nlm.nih.gov/pubmed/37466428
http://dx.doi.org/10.18632/aging.204882
Descripción
Sumario:This study aimed to develop an exosome-coated polydatin (PD) nanoparticles (exo-PD) for improving the water solubility and bioavailability of polydatin and explore its salutary effects on intestinal radiation injury. Exosomes (exo) were extracted from the medium of human amniotic fluid stem cells (hAFSc). Mice were divided into control group, irradiation (IR) group, irradiation+PD (IR+PD) group, irradiation+exo (IR+exo) group and irradiation+exo-PD (IR+exo-PD) group. The results of characterization of protein markers, particle size, morphology and cellular uptake ability confirmed that exosomes were effectively isolated using ultracentrifugation. Compared with the IR group, exo-PD improved cell viability, prolonged survival of mice, improved leukocyte count and reduced diarrhea rate. Histological results showed that the exo-PD group had significant improvements in small intestinal villus length and crypt number and less crypt cell damage. exo-PD could reduce IL-1α and IL-6 levels, reduced γ-H2AX expression, increased mitochondrial membrane potential, enhanced oxidative phosphorylation, and delayed cellular senescence. exo-PD could alleviate intestinal injury by improving mitochondrial function through PI3K-AKT pathway. The exo-PD was able to reduce radiation damage to intestinal cells and could be a potential candidate for salvage of intestinal radiation damage.