Cargando…

Artificial cells eavesdropping on HepG2 cells

Cellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalia...

Descripción completa

Detalles Bibliográficos
Autores principales: Westensee, Isabella Nymann, Städler, Brigitte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415741/
https://www.ncbi.nlm.nih.gov/pubmed/37577001
http://dx.doi.org/10.1098/rsfs.2023.0007
Descripción
Sumario:Cellular communication is a fundamental feature to ensure the survival of cellular assemblies, such as multicellular tissue, via coordinated adaption to changes in their surroundings. Consequently, the development of integrated semi-synthetic systems consisting of artificial cells (ACs) and mammalian cells requires feedback-based interactions. Here, we illustrate that ACs can eavesdrop on HepG2 cells focusing on the activity of cytochrome P450 1A2 (CYP1A2), an enzyme from the cytochrome P450 enzyme family. Specifically, d-cysteine is sent as a signal from the ACs via the triggered reduction of disulfide bonds. Simultaneously, HepG2 cells enzymatically convert 2-cyano-6-methoxybenzothiazole into 2-cyano-6-hydroxybenzothiazole that is released in the extracellular space. d-Cysteine and 2-cyano-6-hydroxybenzothiazole react to form d-luciferin. The ACs respond to this signal by converting d-luciferin into luminescence due to the presence of encapsulated luciferase in the ACs. As a result, the ACs can eavesdrop on the mammalian cells to evaluate the level of hepatic CYP1A2 function.