Cargando…

A Review of micro RNAs changes in T2DM in animals and humans

Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin sec...

Descripción completa

Detalles Bibliográficos
Autores principales: Afsharmanesh, Mohammad Reza, Mohammadi, Zeinab, Mansourian, Azad Reza, Jafari, Seyyed Mehdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wiley Publishing Asia Pty Ltd 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10415875/
https://www.ncbi.nlm.nih.gov/pubmed/37329278
http://dx.doi.org/10.1111/1753-0407.13431
Descripción
Sumario:Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin‐6 are elevated in insulin‐resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA‐induced silencing complexes and regulate the expression of specific protein‐coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.