Cargando…
Robust design of a machine learning-based GNSS NLOS detector with multi-frequency features
The robust detection of GNSS non-line-of-sight (NLOS) signals is of vital importance for land- and close-to-land-based safe navigation applications. The usage of GNSS measurements affected by NLOS can lead to large unbounded positioning errors and loss of safety. Due to the complex signal conditions...
Autores principales: | García Crespillo, Omar, Ruiz-Sicilia, Juan Carlos, Kliman, Ana, Marais, Juliette |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416230/ https://www.ncbi.nlm.nih.gov/pubmed/37575371 http://dx.doi.org/10.3389/frobt.2023.1171255 |
Ejemplares similares
-
GNSS NLOS Signal Classification Based on Machine Learning and Pseudorange Residual Check
por: Ozeki, Tomohiro, et al.
Publicado: (2022) -
Editorial: Enhanced GNSS-based localization solutions with artificial intelligence
por: Marais, Juliette, et al.
Publicado: (2023) -
Using convolutional neural networks to detect GNSS multipath
por: Guillard, Anthony, et al.
Publicado: (2023) -
Improved weighting in particle filters applied to precise state estimation in GNSS
por: Zocca, Simone, et al.
Publicado: (2022) -
On the precision of 6 DoF IMU-LiDAR based localization in GNSS-denied scenarios
por: Frosi, Matteo, et al.
Publicado: (2023)