Cargando…

Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks

[Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Ziting, Parker, Surya T., Forse, Alexander C., Lee, Jung-Hoon, Siegelman, Rebecca L., Milner, Phillip J., Tsai, Hsinhan, Ye, Mengshan, Xiong, Shuoyan, Paley, Maria V., Uliana, Adam A., Oktawiec, Julia, Dinakar, Bhavish, Didas, Stephanie A., Meihaus, Katie R., Reimer, Jeffrey A., Neaton, Jeffrey B., Long, Jeffrey R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416307/
https://www.ncbi.nlm.nih.gov/pubmed/37493594
http://dx.doi.org/10.1021/jacs.3c03870
_version_ 1785087744423231488
author Zhu, Ziting
Parker, Surya T.
Forse, Alexander C.
Lee, Jung-Hoon
Siegelman, Rebecca L.
Milner, Phillip J.
Tsai, Hsinhan
Ye, Mengshan
Xiong, Shuoyan
Paley, Maria V.
Uliana, Adam A.
Oktawiec, Julia
Dinakar, Bhavish
Didas, Stephanie A.
Meihaus, Katie R.
Reimer, Jeffrey A.
Neaton, Jeffrey B.
Long, Jeffrey R.
author_facet Zhu, Ziting
Parker, Surya T.
Forse, Alexander C.
Lee, Jung-Hoon
Siegelman, Rebecca L.
Milner, Phillip J.
Tsai, Hsinhan
Ye, Mengshan
Xiong, Shuoyan
Paley, Maria V.
Uliana, Adam A.
Oktawiec, Julia
Dinakar, Bhavish
Didas, Stephanie A.
Meihaus, Katie R.
Reimer, Jeffrey A.
Neaton, Jeffrey B.
Long, Jeffrey R.
author_sort Zhu, Ziting
collection PubMed
description [Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO(2) adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine–Mg(2)(olz) (olz(4–) = (E)-5,5′-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO(2) adsorption across a wide range of pressures and temperatures. Analysis of CO(2) adsorption data reveals that the basicity of the pore-dwelling amine—in addition to its steric bulk—is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO(2) uptake. One material, ee-2–Mg(2)(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO(2) from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO(2) capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine–Mg(2)(olz) materials capture CO(2) via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.
format Online
Article
Text
id pubmed-10416307
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104163072023-08-12 Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks Zhu, Ziting Parker, Surya T. Forse, Alexander C. Lee, Jung-Hoon Siegelman, Rebecca L. Milner, Phillip J. Tsai, Hsinhan Ye, Mengshan Xiong, Shuoyan Paley, Maria V. Uliana, Adam A. Oktawiec, Julia Dinakar, Bhavish Didas, Stephanie A. Meihaus, Katie R. Reimer, Jeffrey A. Neaton, Jeffrey B. Long, Jeffrey R. J Am Chem Soc [Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO(2) adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine–Mg(2)(olz) (olz(4–) = (E)-5,5′-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO(2) adsorption across a wide range of pressures and temperatures. Analysis of CO(2) adsorption data reveals that the basicity of the pore-dwelling amine—in addition to its steric bulk—is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO(2) uptake. One material, ee-2–Mg(2)(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO(2) from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO(2) capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine–Mg(2)(olz) materials capture CO(2) via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design. American Chemical Society 2023-07-26 /pmc/articles/PMC10416307/ /pubmed/37493594 http://dx.doi.org/10.1021/jacs.3c03870 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Zhu, Ziting
Parker, Surya T.
Forse, Alexander C.
Lee, Jung-Hoon
Siegelman, Rebecca L.
Milner, Phillip J.
Tsai, Hsinhan
Ye, Mengshan
Xiong, Shuoyan
Paley, Maria V.
Uliana, Adam A.
Oktawiec, Julia
Dinakar, Bhavish
Didas, Stephanie A.
Meihaus, Katie R.
Reimer, Jeffrey A.
Neaton, Jeffrey B.
Long, Jeffrey R.
Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title_full Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title_fullStr Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title_full_unstemmed Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title_short Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
title_sort cooperative carbon dioxide capture in diamine-appended magnesium–olsalazine frameworks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416307/
https://www.ncbi.nlm.nih.gov/pubmed/37493594
http://dx.doi.org/10.1021/jacs.3c03870
work_keys_str_mv AT zhuziting cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT parkersuryat cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT forsealexanderc cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT leejunghoon cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT siegelmanrebeccal cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT milnerphillipj cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT tsaihsinhan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT yemengshan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT xiongshuoyan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT paleymariav cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT ulianaadama cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT oktawiecjulia cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT dinakarbhavish cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT didasstephaniea cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT meihauskatier cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT reimerjeffreya cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT neatonjeffreyb cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks
AT longjeffreyr cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks