Cargando…
Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks
[Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, wh...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416307/ https://www.ncbi.nlm.nih.gov/pubmed/37493594 http://dx.doi.org/10.1021/jacs.3c03870 |
_version_ | 1785087744423231488 |
---|---|
author | Zhu, Ziting Parker, Surya T. Forse, Alexander C. Lee, Jung-Hoon Siegelman, Rebecca L. Milner, Phillip J. Tsai, Hsinhan Ye, Mengshan Xiong, Shuoyan Paley, Maria V. Uliana, Adam A. Oktawiec, Julia Dinakar, Bhavish Didas, Stephanie A. Meihaus, Katie R. Reimer, Jeffrey A. Neaton, Jeffrey B. Long, Jeffrey R. |
author_facet | Zhu, Ziting Parker, Surya T. Forse, Alexander C. Lee, Jung-Hoon Siegelman, Rebecca L. Milner, Phillip J. Tsai, Hsinhan Ye, Mengshan Xiong, Shuoyan Paley, Maria V. Uliana, Adam A. Oktawiec, Julia Dinakar, Bhavish Didas, Stephanie A. Meihaus, Katie R. Reimer, Jeffrey A. Neaton, Jeffrey B. Long, Jeffrey R. |
author_sort | Zhu, Ziting |
collection | PubMed |
description | [Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO(2) adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine–Mg(2)(olz) (olz(4–) = (E)-5,5′-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO(2) adsorption across a wide range of pressures and temperatures. Analysis of CO(2) adsorption data reveals that the basicity of the pore-dwelling amine—in addition to its steric bulk—is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO(2) uptake. One material, ee-2–Mg(2)(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO(2) from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO(2) capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine–Mg(2)(olz) materials capture CO(2) via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design. |
format | Online Article Text |
id | pubmed-10416307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-104163072023-08-12 Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks Zhu, Ziting Parker, Surya T. Forse, Alexander C. Lee, Jung-Hoon Siegelman, Rebecca L. Milner, Phillip J. Tsai, Hsinhan Ye, Mengshan Xiong, Shuoyan Paley, Maria V. Uliana, Adam A. Oktawiec, Julia Dinakar, Bhavish Didas, Stephanie A. Meihaus, Katie R. Reimer, Jeffrey A. Neaton, Jeffrey B. Long, Jeffrey R. J Am Chem Soc [Image: see text] Diamine-appended Mg(2)(dobpdc) (dobpdc(4–) = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate) metal–organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO(2) selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO(2) adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine–Mg(2)(olz) (olz(4–) = (E)-5,5′-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO(2) adsorption across a wide range of pressures and temperatures. Analysis of CO(2) adsorption data reveals that the basicity of the pore-dwelling amine—in addition to its steric bulk—is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO(2) uptake. One material, ee-2–Mg(2)(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO(2) from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO(2) capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine–Mg(2)(olz) materials capture CO(2) via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design. American Chemical Society 2023-07-26 /pmc/articles/PMC10416307/ /pubmed/37493594 http://dx.doi.org/10.1021/jacs.3c03870 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Zhu, Ziting Parker, Surya T. Forse, Alexander C. Lee, Jung-Hoon Siegelman, Rebecca L. Milner, Phillip J. Tsai, Hsinhan Ye, Mengshan Xiong, Shuoyan Paley, Maria V. Uliana, Adam A. Oktawiec, Julia Dinakar, Bhavish Didas, Stephanie A. Meihaus, Katie R. Reimer, Jeffrey A. Neaton, Jeffrey B. Long, Jeffrey R. Cooperative Carbon Dioxide Capture in Diamine-Appended Magnesium–Olsalazine Frameworks |
title | Cooperative Carbon
Dioxide Capture in Diamine-Appended
Magnesium–Olsalazine Frameworks |
title_full | Cooperative Carbon
Dioxide Capture in Diamine-Appended
Magnesium–Olsalazine Frameworks |
title_fullStr | Cooperative Carbon
Dioxide Capture in Diamine-Appended
Magnesium–Olsalazine Frameworks |
title_full_unstemmed | Cooperative Carbon
Dioxide Capture in Diamine-Appended
Magnesium–Olsalazine Frameworks |
title_short | Cooperative Carbon
Dioxide Capture in Diamine-Appended
Magnesium–Olsalazine Frameworks |
title_sort | cooperative carbon
dioxide capture in diamine-appended
magnesium–olsalazine frameworks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416307/ https://www.ncbi.nlm.nih.gov/pubmed/37493594 http://dx.doi.org/10.1021/jacs.3c03870 |
work_keys_str_mv | AT zhuziting cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT parkersuryat cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT forsealexanderc cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT leejunghoon cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT siegelmanrebeccal cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT milnerphillipj cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT tsaihsinhan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT yemengshan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT xiongshuoyan cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT paleymariav cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT ulianaadama cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT oktawiecjulia cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT dinakarbhavish cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT didasstephaniea cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT meihauskatier cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT reimerjeffreya cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT neatonjeffreyb cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks AT longjeffreyr cooperativecarbondioxidecaptureindiamineappendedmagnesiumolsalazineframeworks |