Cargando…
Accurate mandibular canal segmentation of dental CBCT using a two-stage 3D-UNet based segmentation framework
OBJECTIVES: The objective of this study is to develop a deep learning (DL) model for fast and accurate mandibular canal (MC) segmentation on cone beam computed tomography (CBCT). METHODS: A total of 220 CBCT scans from dentate subjects needing oral surgery were used in this study. The segmentation g...
Autores principales: | Lin, Xi, Xin, Weini, Huang, Jingna, Jing, Yang, Liu, Pengfei, Han, Jingdan, Ji, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416403/ https://www.ncbi.nlm.nih.gov/pubmed/37563606 http://dx.doi.org/10.1186/s12903-023-03279-2 |
Ejemplares similares
-
Whole mandibular canal segmentation using transformed dental CBCT volume in Frenet frame
por: Zhao, Huanmiao, et al.
Publicado: (2023) -
Comparison of deep learning segmentation and multigrader-annotated mandibular canals of multicenter CBCT scans
por: Järnstedt, Jorma, et al.
Publicado: (2022) -
Dual-Stage Deeply Supervised Attention-Based Convolutional Neural Networks for Mandibular Canal Segmentation in CBCT Scans
por: Usman, Muhammad, et al.
Publicado: (2022) -
A New Semantic Segmentation Framework Based on UNet
por: Fu, Leiyang, et al.
Publicado: (2023) -
Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
por: Jeoun, Bo-Soung, et al.
Publicado: (2022)