Cargando…
Protective role of thymoquinone in hyperlipidemia-induced liver injury in LDL-R(−/−)mice
BACKGROUND: Hyperlipidemia, a heterogeneous group of disorders characterized by elevated plasma lipids in the blood, causes severe health problems, leading to fatty liver disease and nonalcoholic fatty liver disease. Thymoquinone, the major active chemical component of Nigella sativa, reportedly exe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416449/ https://www.ncbi.nlm.nih.gov/pubmed/37568105 http://dx.doi.org/10.1186/s12876-023-02895-0 |
Sumario: | BACKGROUND: Hyperlipidemia, a heterogeneous group of disorders characterized by elevated plasma lipids in the blood, causes severe health problems, leading to fatty liver disease and nonalcoholic fatty liver disease. Thymoquinone, the major active chemical component of Nigella sativa, reportedly exerts a vast array of biological effects. Various studies have reported that Thymoquinone protects against liver injury. AIMS: The aim of this study was to investigate the possible protective effects of Thymoquinone against liver injury in hyperlipidemia-induced LDL-R(−/−) mice. METHODS: Eight-week-old male LDL-R(−/−) mice were randomly divided into three groups: a control group fed a normal diet and two groups fed a high-cholesterol diet or high-cholesterol diet mixed with Thymoquinone. All groups were fed different diets for 8 weeks. Blood samples were obtained from the inferior vena cava and collected in serum tubes. The samples were then stored at − 80 °C until used. Longitudinal sections of liver tissues were fixed in 10% formalin and then embedded in paraffin for histological evaluation. The remainder of the liver tissues were snap-frozen in liquid nitrogen for reverse transcription-polymerase chain reaction or western blotting. RESULTS: Our results demonstrated that Thymoquinone administration significantly reduced liver histological alterations by hyperlipidemia. Thymoquinone mitigated hyperlipidemia-induced liver injury as indicated by the suppression of metabolic characteristics, liver biochemical parameters, pyroptosis indicators, a macrophage marker, and the phosphatidylinositide 3-kinase signaling pathway. CONCLUSIONS: Thymoquinone is a potential therapeutic agent for hyperlipidemia-induced liver injury. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12876-023-02895-0. |
---|