Cargando…
Machine learning algorithms to predict intraoperative hemorrhage in surgical patients: a modeling study of real-world data in Shanghai, China
BACKGROUND: Prediction tools for various intraoperative bleeding events remain scarce. We aim to develop machine learning-based models and identify the most important predictors by real-world data from electronic medical records (EMRs). METHODS: An established database of surgical inpatients in Shan...
Autores principales: | Shi, Ying, Zhang, Guangming, Ma, Chiye, Xu, Jiading, Xu, Kejia, Zhang, Wenyi, Wu, Jianren, Xu, Liling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416513/ https://www.ncbi.nlm.nih.gov/pubmed/37563676 http://dx.doi.org/10.1186/s12911-023-02253-w |
Ejemplares similares
-
XGBoost Machine Learning Algorithm for Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage
por: Wang, Ruoran, et al.
Publicado: (2022) -
Machine Learning: Algorithms, Real-World Applications and Research Directions
por: Sarker, Iqbal H.
Publicado: (2021) -
Fighting Omicron epidemic in China: Real-world big data from Fangcang shelter hospital during the outbreak in Shanghai 2022
por: Ye, Lingying, et al.
Publicado: (2022) -
Evaluating the risk of hypertension in residents in primary care in Shanghai, China with machine learning algorithms
por: Chen, Ning, et al.
Publicado: (2022) -
Real-World COPD Management Over 3 Years at the Community Health Service Center of Shanghai During the COVID-19 Pandemic in China
por: Wu, Ting-Ting, et al.
Publicado: (2023)