Cargando…

Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere

[Image: see text] Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for...

Descripción completa

Detalles Bibliográficos
Autores principales: Visser, Nienke L., Turner, Savannah J., Stewart, Joseph A., Vandegehuchte, Bart D., van der Hoeven, Jessi E. S., de Jongh, Petra E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416566/
https://www.ncbi.nlm.nih.gov/pubmed/37504574
http://dx.doi.org/10.1021/acsnano.3c03721
_version_ 1785087809573355520
author Visser, Nienke L.
Turner, Savannah J.
Stewart, Joseph A.
Vandegehuchte, Bart D.
van der Hoeven, Jessi E. S.
de Jongh, Petra E.
author_facet Visser, Nienke L.
Turner, Savannah J.
Stewart, Joseph A.
Vandegehuchte, Bart D.
van der Hoeven, Jessi E. S.
de Jongh, Petra E.
author_sort Visser, Nienke L.
collection PubMed
description [Image: see text] Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO(2) hydrogenation at atmospheric pressure (H(2):CO(2) = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement (v(max) = 0.7 nm s(–1)) and slow, gradual movement (v(average) = 0.05 nm s(–1)). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts.
format Online
Article
Text
id pubmed-10416566
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-104165662023-08-12 Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere Visser, Nienke L. Turner, Savannah J. Stewart, Joseph A. Vandegehuchte, Bart D. van der Hoeven, Jessi E. S. de Jongh, Petra E. ACS Nano [Image: see text] Understanding nanoparticle growth is crucial to increase the lifetime of supported metal catalysts. In this study, we employ in situ gas-phase transmission electron microscopy to visualize the movement and growth of ensembles of tens of nickel nanoparticles supported on carbon for CO(2) hydrogenation at atmospheric pressure (H(2):CO(2) = 4:1) and relevant temperature (450 °C) in real time. We observe two modes of particle movement with an order of magnitude difference in velocity: fast, intermittent movement (v(max) = 0.7 nm s(–1)) and slow, gradual movement (v(average) = 0.05 nm s(–1)). We visualize the two distinct particle growth mechanisms: diffusion and coalescence, and Ostwald ripening. The diffusion and coalescence mechanism dominates at small interparticle distances, whereas Ostwald ripening is driven by differences in particle size. Strikingly, we demonstrate an interplay between the two mechanisms, where first coalescence takes place, followed by fast Ostwald ripening due to the increased difference in particle size. Our direct visualization of the complex nanoparticle growth mechanisms highlights the relevance of studying nanoparticle growth in supported nanoparticle ensembles under reaction conditions and contributes to the fundamental understanding of the stability in supported metal catalysts. American Chemical Society 2023-07-28 /pmc/articles/PMC10416566/ /pubmed/37504574 http://dx.doi.org/10.1021/acsnano.3c03721 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Visser, Nienke L.
Turner, Savannah J.
Stewart, Joseph A.
Vandegehuchte, Bart D.
van der Hoeven, Jessi E. S.
de Jongh, Petra E.
Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title_full Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title_fullStr Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title_full_unstemmed Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title_short Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere
title_sort direct observation of ni nanoparticle growth in carbon-supported nickel under carbon dioxide hydrogenation atmosphere
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416566/
https://www.ncbi.nlm.nih.gov/pubmed/37504574
http://dx.doi.org/10.1021/acsnano.3c03721
work_keys_str_mv AT vissernienkel directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere
AT turnersavannahj directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere
AT stewartjosepha directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere
AT vandegehuchtebartd directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere
AT vanderhoevenjessies directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere
AT dejonghpetrae directobservationofninanoparticlegrowthincarbonsupportednickelundercarbondioxidehydrogenationatmosphere