Cargando…
Automatic Diagnosis of Spinal Disorders on Radiographic Images: Leveraging Existing Unstructured Datasets With Natural Language Processing
STUDY DESIGN: Retrospective study. OBJECTIVES: Huge amounts of images and medical reports are being generated in radiology departments. While these datasets can potentially be employed to train artificial intelligence tools to detect findings on radiological images, the unstructured nature of the re...
Autores principales: | Galbusera, Fabio, Cina, Andrea, Bassani, Tito, Panico, Matteo, Sconfienza, Luca Maria |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416592/ https://www.ncbi.nlm.nih.gov/pubmed/34219477 http://dx.doi.org/10.1177/21925682211026910 |
Ejemplares similares
-
A fresh look at spinal alignment and deformities: Automated analysis of a large database of 9832 biplanar radiographs
por: Galbusera, Fabio, et al.
Publicado: (2022) -
2-step deep learning model for landmarks localization in spine radiographs
por: Cina, Andrea, et al.
Publicado: (2021) -
The importance of curve severity, type and instrumentation strategy in the surgical correction of adolescent idiopathic scoliosis: an in silico clinical trial on 64 cases
por: Galbusera, Fabio, et al.
Publicado: (2021) -
Automatic classification of the vertebral endplate lesions in magnetic resonance imaging by deep learning model
por: Bassani, Tito, et al.
Publicado: (2023) -
The Revival of the Notes Field: Leveraging the Unstructured Content in Electronic Health Records
por: Assale, Michela, et al.
Publicado: (2019)