Cargando…
Revealing the Impact of Genomic Alterations on Cancer Cell Signaling with an Interpretable Deep Learning Model
SIMPLE SUMMARY: Cancer results from aberrant cellular signaling caused by somatic genomic alterations (SGAs). However, inferring how SGAs cause aberrations in cellular signaling and lead to cancer remains challenging. We designed an interpretable deep learning model to encode the impact of SGAs on c...
Autores principales: | Young, Jonathan D., Ren, Shuangxia, Chen, Lujia, Lu, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10416927/ https://www.ncbi.nlm.nih.gov/pubmed/37568673 http://dx.doi.org/10.3390/cancers15153857 |
Ejemplares similares
-
An interpretable deep learning framework for genome-informed precision oncology
por: Ren, Shuangxia, et al.
Publicado: (2023) -
Discovering functional impacts of miRNAs in cancers using a causal deep learning model
por: Chen, Lujia, et al.
Publicado: (2018) -
Interpretable deep learning for chromatin-informed inference of transcriptional programs driven by somatic alterations across cancers
por: Tao, Yifeng, et al.
Publicado: (2022) -
De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based Graph Regularized Matrix Factorization
por: Ren, Shuangxia, et al.
Publicado: (2022) -
Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
por: Young, Jonathan D., et al.
Publicado: (2017)